
Sailing the I2Cs
with the Bus Pirate

ShareBrained Technology

Jared Boone
DorkbotPDX 0x08 - January 30, 2012

Tuesday, February 26, 13
Hi, I'm Jared Boone. I'm going to speak about the I2C bus, and a cool gadget, called the Bus Pirate, that makes working with the I2C bus a lot easier.

“I2C”?

• “Inter-Integrated Circuit” bus.
• Truth in naming: provides a way for integrated

circuits (chips) to communicate.
• Very simple. So simple it costs virtually nothing to

implement inside a chip.
• PCI, USB, even PC-style serial ports are more

complicated and expensive to put in a chip. And
they’re all overkill for chip-chip communication.

Tuesday, February 26, 13
So what is I2C? It’s a communication bus designed specifically for chips to communicate with each other, very inexpensively. The best way to make something inexpensive is to make it
simple. And I2C is definitely simple. It’s *almost* the simplest form of digital communication conceivable. Way simpler than PCI or PCI Express. Way simpler than USB. Simpler, even, than a
PC serial port.

What Speaks I2C?

• Many integrated circuits -- sensors, memories,
chips that need to be configured/controlled
externally.

• Most microcontrollers speak I2C, too. The Arduino
(AVR8), ARMs, MSP430s, PICs, you name it!

Tuesday, February 26, 13
OK, so it’s simple. But what is it good for? A lot of fun and interesting chips implement I2C, as do virtually all the microcontroller chips available. Here are some examples:

Sensors

SparkFun.com

SparkFun.com

SparkFun.com

Tuesday, February 26, 13
Analog Devices ADXL345 three-axis accelerometer

Honeywell HMC5843 three-axis magnetometer (compass)

Invensense ITG-3200 three-axis gyroscope

Many others available -- temperature, humidity, pressure, light/color...

Stereo Audio Codec

Tuesday, February 26, 13
Audio codecs, for high-quality audio.

I2C is not used for the audio signal, but is used for configuring signal routing, input and output volumes, etc.

¤ 2010 Microchip Technology Inc. DS21191S-page 1

24AA128/24LC128/24FC128

Device Selection Table

Features:

• Single Supply with Operation down to 1.7V for
24AA128/24FC128 devices, 2.5V for 24LC128
Devices

• Low-Power CMOS Technology:
- Write current 3 mA, typical
- Standby current 100 nA, typical

• 2-Wire Serial Interface, I2C™ Compatible
• Cascadable up to Eight Devices
• Schmitt Trigger Inputs for Noise Suppression
• Output Slope Control to Eliminate Ground Bounce
• 100 kHz and 400 kHz Clock Compatibility
• 1 MHz Clock for FC Versions
• Page Write Time 5 ms, typical
• Self-Timed Erase/Write Cycle
• 64-Byte Page Write Buffer
• Hardware Write-Protect
• ESD Protection >4000V
• More than 1 Million Erase/Write Cycles
• Data Retention > 200 years
• Factory Programming Available
• Packages include 8-lead PDIP, SOIC, TSSOP,

DFN, TDFN, MSOP, and Chip Scale Packages
• Pb-Free and RoHS Compliant

• Temperature Ranges:

Description:

The Microchip Technology Inc. 24AA128/24LC128/
24FC128 (24XX128*) is a 16K x 8 (128 Kbit) Serial
Electrically Erasable PROM (EEPROM), capable of
operation across a broad voltage range (1.7V to 5.5V).
It has been developed for advanced, low-power
applications such as personal communications or data
acquisition. This device also has a page write capabil-
ity of up to 64 bytes of data. This device is capable of
both random and sequential reads up to the 128K
boundary. Functional address lines allow up to eight
devices on the same bus, for up to 1 Mbit address
space. This device is available in the standard 8-pin
plastic DIP, SOIC (3.90 mm and 5.28 mm), TSSOP,
MSOP, DFN, TDFN and Chip Scale packages.

Block Diagram

*24XX128 is used in this document as a generic part number
for the 24AA128/24LC128/24FC128 devices.

Package Types

Part

Number

VCC

 Range

Max. Clock

Frequency

Temp.

Ranges

24AA128 1.7-5.5V 400 kHz(1) I

24LC128 2.5-5.5V 400 kHz I, E

24FC128 1.7-5.5V 1 MHz(2) I

Note 1: 100 kHz for VCC < 2.5V.
2: 400 kHz for VCC < 2.5V.

- Industrial (I): -40qC to +85qC
- Automotive (E): -40qC to +125qC

HV Generator

EEPROM
Array

Page Latches

YDEC

XDEC

Sense Amp.
R/W Control

Memory
Control

Logic

I/O
Control
Logic

I/O

A0 A1 A2

SDA

SCL

VCC

VSS

WP

A0

A1

A2

VSS

VCC

WP

SCL

SDA

1

2

3

4

8

7

6

5
2
4

X
X

1
2
8

PDIP/SOIC TSSOP/MSOP1

A0

A1

A2

VSS

1

2

3

4

8

7

6

5

VCC

WP

SCL

SDA

2
4
X

X
1
2
8

DFN/TDFN

A0

A1

A2

VSS

WP

SCL

SDA

2
4
X

X
1
2

8

5

6

7

8

4

3

2

1 VCC

Note 1: Pins A0 and A1 are no-connects for the MSOP package only.

CS (Chip Scale)2

1 2 3
4 5

6 7 8

VCC A1 A0

WP A2

SDA SCL VSS

(TOP DOWN VIEW,
BALLS NOT VISIBLE)

 2: Available in I-temp, “AA” only.

128K I2C™ CMOS Serial EEPROM

Courtesy of Microchip

Electrically-Erasable ROM

Tuesday, February 26, 13
memory:

Serial EEPROMs and flash for persisting more data than your microcontroller allows.

BD0

!"##$!#%&' (#%)"*+,

-#%. /012, 3',+#".0'+,

1FEATURES DESCRIPTION

APPLICATIONS

ADS1000

Clock

Oscillator

I C

Interface

2
A/D

Converter
PGA

A�=�1,�2,�4,�or�8

VDD

VIN+

VIN!

GND

SDA

SCL

ADS1000

SBAS357A–SEPTEMBER 2006–REVISED OCTOBER 2007

LOW-POWER, 12-Bit ANALOG-TO-DIGITAL CONVERTER
with I2C™ INTERFACE

23• Complete 12-Bit Data Acquisition System in The ADS1000 is an I2C-compatible serial interface
a Tiny SOT-23 Package Analog-to-Digital (A/D) converter with differential

inputs and 12 bits of resolution in a tiny SOT23-6• Low Current Consumption: Only 90ȝA
package. Conversions are performed ratiometrically,• Integral Nonlinearity: 1LSB Max using the power supply as the reference voltage. The

• Single-Cycle Conversion ADS1000 operates from a single power supply
ranging from 2.7V to 5.5V.• Programmable Gain Amplifier

Gain = 1, 2, 4, or 8 The ADS1000 performs conversions at a rate of 128
• 128SPS Data Rate samples per second (SPS). The onboard

programmable gain amplifier (PGA), which offers• I2C Interface with Two Available Addresses
gains of up to 8, allows smaller signals to be

• Power Supply: 2.7V to 5.5V measured with high resolution. In single-conversion
• Pin- and Software-Compatible with 16-Bit mode, the ADS1000 automatically powers down after

ADS1100 a conversion, greatly reducing current consumption
during idle periods.

The ADS1000 is designed for applications where
• Voltage Monitors space and power consumption are major

considerations. Typical applications include portable• Battery Management
instrumentation, consumer goods, and voltage• Industrial Process Control
monitoring.• Consumer Goods

• Temperature Measurement

1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

2I2C is a trademark of NXP Semiconductors, Inc.
3All other trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Copyright © 2006–2007, Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.

Co
urt

es
y o

f T
ex

as
 In

str
um

en
ts

Analog to Digital Converter

Tuesday, February 26, 13
Data converters:

Low-speed analog-to-digital and digital-to-analog converters for capturing or generating analog signals (if your microcontroller doesn’t have enough converters, or they’re not very good).

I2C-controlled RGB LED

SparkFun.com

Tuesday, February 26, 13
LEDs like the BlinkM:

For generating a complex, multi-color, multi-LED light show from your microcontroller.

How Simple Is It?

• Serial bus -- transfers data one bit at a time.
• No fancy self-clocking scheme (like USB or even

PC-style serial ports). Clock signal is a separate
signal from the data.

• Only two signals/wires to connect chips to each
other. (If they’re on the same board, that is...)

Tuesday, February 26, 13
So I2C is a simple serial bus. It transmits data one bit at a time.

What makes it simpler than other serial buses, like USB or a PC serial port? USB and serial ports use tricky encodings and hardware so the receiving device’s hardware can synchronize
with the transmitted data. That extra hardware is expensive to put in a chip, so instead, the I2C designers added a separate synchronization (or “clock”) signal. This makes the hardware in
the chip a lot simpler.

Shared Bus

uC

Sensor Sensor Memory ADC

I2C

Tuesday, February 26, 13
I2C is a shared bus. You can connect lots of devices to the same bus, and communicate with them individually. With only two signals shared between all the devices, how do the devices on
the bus avoid speaking at the same time?

To start with, I2C uses a master/slave model. The master (usually the microcontroller) starts ALL conversations. The rest of the devices on the bus are slaves, and only respond to the
master’s requests.

OK, so the master is in charge of the bus, initiating all requests. But, at the start of a request, how does the master indicate which device it wants to speak with? At the beginning of each
request, the master sends an address over the bus. Each device has a unique address, and only the device which matches that address will respond.

Unique Addresses

uC

Sensor
addr=1d

Sensor
addr=53

Memory
addr=72

ADC
addr=48

I2C

Tuesday, February 26, 13
I2C addresses are seven bits. So you can only have 128 devices on the bus. In practice, that’s not a big deal. Most I2C designs I’ve seen have no more than a half-dozen devices on the
bus.

Address Conflict

uC

Sensor
addr=1d

Sensor
addr=1d

Memory
addr=72

ADC
addr=48

I2C

Tuesday, February 26, 13
The problem is with how chips get their addresses. Remember, I2C is *cheap*. Most chips with I2C interfaces have a hard-coded address. For instance, the Analog Devices ADXL345
accelerometer chip has an address of 1D hexadecimal. ALL ADXL345s have that same address. So if you have two of those chips on the same I2C bus, they’ll both respond when you try to
talk to address 1D, and things won’t work right.

Separate Buses

uC

Sensor
addr=1d

Sensor
addr=1d

Memory
addr=72

ADC
addr=48

I2C

I2C

Tuesday, February 26, 13
One thing you can do is move one of the conflicting devices to a different I2C bus, if your microcontroller has another I2C bus.

Device Reconfiguration

uC

Sensor
addr=1d

Sensor
addr=53

Memory
addr=72

ADC
addr=48

I2C

0 1

Tuesday, February 26, 13
Or, some I2C chips have configuration pins that allow you to set the address to one of several choices. In this case, we can configure each of the ADXL345 sensor chips to operate on one of
two addresses (1d hex, or 53 hex). Of course, if we had THREE ADXL345s on the same bus, we’d once again have a conflict, since we can choose only one of TWO addresses for those
chips.

Transactions

A request from the master, to a slave device:
• Master sends slave device address.
• Master sends direction of transfer -- “read” or

“write”.
• Slave (if any) responds to “go ahead”.
• Master or slave transmits data (depending on

direction specified above).
• Master ends transaction.

Tuesday, February 26, 13
I2C communication happens in units called “transactions”, which involve transferring data between the master and one of the slaves.

Each transaction starts with the address of the device the master wants to talk to, and the direction of the data transfer (“read” or “write”). Once the address and direction is sent, the
addressed device will send an acknowledgement. If no device recognizes the address, no acknowledgement is sent.

If a slave responded, the master and slave transfer data.

Single-Byte Transmit

A transaction is starting!

The transaction is done!

(We’re listening...)

I am transmitting to device 72!

Other devices: (crickets)
Device 72: OK, ready!

Here is a byte of data!

Device 72: OK, ready for more!

Master Slaves

Tuesday, February 26, 13
Here’s a more diagrammatical example where the master is sending one byte of data to slave with address 72.

Multi-Byte Transmit

START.

STOP.

Address=72

Device 72: ACK

Data byte

Device 72: ACK

Master Slaves

Data byte
Device 72: NAK

Direction=Write

Tuesday, February 26, 13
Here’s another transaction, this time with better I2C terminology:

The beginning and end of a transaction are indicated by START and STOP bits sent by the master.
If the slave can’t accept the data for whatever reason, it sends back a “NAK” (negative acknowledgement), and the master will end the transaction.

Multi-Byte Receive

START. Address=72, Direction=Read

STOP.

ACK (ready for more)
Data byte

Master Slave

Data byte
ACK (ready for more)

NAK (I’ve had enough)

Tuesday, February 26, 13
Here, we send data in the other direction, from the slave to the master.

Pretty much the same stuff, but in the opposite direction... START bit, address, direction, acknowledgement after every byte, and the STOP bit.

dangerousprototypes.com

Bus Pirate

Dangerous Prototypes, available from SeeedStudio

Tuesday, February 26, 13
Talking with I2C devices using a microcontroller can be painful -- keeping track of START and STOP bits and acknowledgements... The Bus Pirate is the easiest way I’ve seen to get to know
a new I2C device. You don’t have to write any code to play with a new I2C device, and you can be sure the Bus Pirate is doing I2C right. So all you have to do is understand the chip you’re
communicating with.

Dangerous Prototypes designed the Bus Pirate, and they sell it through SeeedStudio (yes, that’s THREE “e”s.) It interfaces directly with computer via USB, shows up as a serial port. Via the
serial port, you choose options from a menu and issue commands to transmit over I2C. It can supply power to target device (either 3.3 or 5 volts), so you really don’t need anything else to
play with an I2C chip.

It’s good for a lot more than I2C, too...

• I2C, SPI, raw two- and three-wire serial
• Dallas/Maxim 1-WIRE
• UART (e.g. PC serial port)
• HD44780 LCD (requires adapter board)
• Supports AVR ISP programming via SPI w/AVRDude.
• PWM (servo motors and other stuff!)
• ADC voltage sampling (very slow oscilloscope)
• Alternate firmwares do a bunch of other cool stuff.

Bus Pirate “Protocols”

Tuesday, February 26, 13
Here’s some of the other stuff you can do with a Bus Pirate. I have yet to try most of this
stuff...

dangerousprototypes.com

Bus Pirate Target Interface

Tuesday, February 26, 13
Here’s the signals available from the Bus Pirate. I’ve outlined the I2C-specific signals. You can see the other buses and signals it supports, and imagine how to hook it up to a JTAG or SPI or
UART device.

Useful Accessories

• 0.1” stake pin jumpers! Short bits of wire with
female pin connectors on both ends.

• The SeeedStudio Bus Pirate Probe Kit is not so
great. The clips are quite uncooperative...

• Reliable USB cable. (Long story...)

Tuesday, February 26, 13
A few recommendations if you’re going to buy a Bus Pirate. Definitely get the stake pin jumpers. I use them all the time, and they’re great. And they’re good for a lot more than Bus Pirate
stuff.

I’d avoid the probe kit. The one I got turned to junk in about a day. The clips won’t clip, or fall apart.

Bus Pirate “Open”

• Mac OS Terminal
screen /dev/tty.usbserial-<something> 115200

• Linux:
screen /dev/tty<something> 115200

• Windows: I have no idea. I hear HyperTerminal is no
longer included as of Vista...

Tuesday, February 26, 13
How do you communicate with the Bus Pirate? Just like any other serial port, though by default, it runs at 115 kilobaud.

Bus Pirate “Login”

• Press ENTER/RETURN for a prompt.
• Default mode is “HiZ”. Prompt indicates bus mode.
• “?” command gets you the menu.

Tuesday, February 26, 13
Once you’ve connected to the Bus Pirate via the serial port, you need to get its attention. Press ENTER/RETURN, and you’ll be greeted with a “HiZ” prompt. Type “?” to get the main menu.

Bus Pirate Menu
 General Protocol interaction

 ? This help (0) List current macros
 =X/|X Converts X/reverse X (x) Macro x
 ~ Selftest [Start
 # Reset the BP] Stop
 $ Jump to bootloader { Start with read
 &/% Delay 1 us/ms } Stop
 a/A/@ AUXPIN (low/HI/READ) "abc" Send string
 b Set baudrate 123
 c/C AUX assignment (aux/CS) 0x123
 d/D Measure ADC (once/CONT.) 0b110 Send value
 f Measure frequency r Read
 g/S Generate PWM/Servo / CLK hi
 h Commandhistory \ CLK lo
 i Versioninfo/statusinfo ^ CLK tick
 l/L Bitorder (msb/LSB) - DAT hi
 m Change mode _ DAT lo
 o Set output type . DAT read
 p/P Pullup resistors (off/ON) ! Bit read
 s Script engine : Repeat e.g. r:10
 v Show volts/states ; Bits to read/write e.g. 0x55;2
 w/W PSU (off/ON) <x>/<x= >/<0> Usermacro x/assign x/list all
HiZ>

Tuesday, February 26, 13
Here’s the main menu. There’s lots of options I haven’t used yet -- the ability to bit-bang signals, sample analog voltages, control servos, etc. etc.

SparkFun.com

Demo!

Three-Axis Accelerometer

Tuesday, February 26, 13
Demo time.
I had this breakout board laying around from a car racing project I built a couple of years ago. It’s an Analog Devices ADXL345 breakout board from SparkFun. Who doesn’t love
accelerometers?

Board Schematic

Tuesday, February 26, 13

Here’s the breakout board schematic. The I2C signals are SDA (data) and SCL (clock). We also
need to hook up power. Reading the datasheet, I see the chip can accept supply voltage up to
3.6 volts, so we’ll use the Bus Pirate’s 3.3 volt supply.

Also in the datasheet: This chip will operate on two different kinds of buses -- I2C and SPI.
To select I2C, the CS pin on the chip must be at the supply voltage when the chip is turned
on. The Bus Pirate has a couple of spare signals, so I’ll use one of those to control the chip’s
CS pin.

Bus Pirate Connections

Bus Pirate Target Board

GND GND

CLK (I2C:SCL) SCL

MOSI (I2C:SDA) SDA

CS CS (for I2C bus mode)

+3V3 VCC (2.0 to 3.6V only!)

AUX looped back to VPU

Tuesday, February 26, 13

Here’s how I connected the Bus Pirate to the board.

I2C requires you to connect two resistors to make the bus work. One goes between SCL and
the power supply, and the other between SDA and the power supply. It’s too long of a story
to get into right now. But regardless, the Bus Pirate provides controllable pull-up resistors, so
you don’t need to wire them up yourself if your I2C circuit doesn’t already have them. You do
need to supply power to the pull-up resistors (via the Bus Pirate’s VPU pin), so I played a little
trick, using one of the Bus Pirate’s extra signals (AUX) to drive power into the VPU pin.
(Apparently, they’re eliminating the need for this trick in the forthcoming Bus Pirate v4.)

Enter I2C Mode
HiZ>m
1. HiZ
2. 1-WIRE
3. UART
4. I2C
5. SPI
6. 2WIRE
7. 3WIRE
8. LCD
x. exit(without change)

(1)>4
Set speed:
 1. ~5KHz
 2. ~50KHz
 3. ~100KHz
 4. ~400KHz

(1)>1
Ready
I2C>

Tuesday, February 26, 13

Slow is good when you’re starting out with a new chip. I usually start with 5KHz -- still way
faster than I can type. At 5KHz, I don’t have to worry about how bad or ugly my wiring is, or
how fast the chip can communicate via I2C -- it should just work.

Turn On The Things!

I2C>c
a/A/@ controls AUX pin
I2C>A
AUX HIGH
I2C>C
a/A/@ controls CS pin
I2C>A
AUX HIGH
I2C>P
Pull-up resistors ON
I2C>W
POWER SUPPLIES ON
I2C>

Tuesday, February 26, 13

Here, I’m setting up the I2C pull-up resistor power, setting the chip’s bus mode, and turning
on the power to the chip.

Turn on the AUX pin, to power the I2C pull-up resistors.
Turn on the CS pin, to set the chip’s bus mode.
Enable the Bus Pirate’s I2C pull-up resistors.
Turn on the Bus Pirate’s power supplies.

The chip now has power, is in I2C mode, and should respond to I2C commands.

Address Search

Reveals chip responding at:
0xA6 (address 0x53 + write)
0xA7 (address 0x53 + read)

I2C>(1)
Searching I2C address space. Found devices at:
0xA6(0x53 W) 0xA7(0x53 R)

I2C>

Tuesday, February 26, 13

The Bus Pirate can scan the I2C bus, looking for slave chips. It’ll then print out what it found.
A chip’s address is usually in the data sheet, but it can be hard to find. Letting the Bus Pirate
find your chip’s address is a whole lot easier...

The Bus Pirate printed out the full eight-bit address+direction values for reading (0xa7) and
writing (0xa6), and also shows the address value by itself (0x53).

Now What?
ADXL345

Rev. A | Page 22 of 36

REGISTER MAP
Table 19.

Address
Hex Dec Name Type Reset Value Description
0x00 0 DEVID R 11100101 Device ID
0x01 to 0x1C 1 to 28 Reserved Reserved; do not access
0x1D 29 THRESH_TAP R/W 00000000 Tap threshold
0x1E 30 OFSX R/W 00000000 X-axis offset
0x1F 31 OFSY R/W 00000000 Y-axis offset
0x20 32 OFSZ R/W 00000000 Z-axis offset
0x21 33 DUR R/W 00000000 Tap duration
0x22 34 Latent R/W 00000000 Tap latency
0x23 35 Window R/W 00000000 Tap window
0x24 36 THRESH_ACT R/W 00000000 Activity threshold
0x25 37 THRESH_INACT R/W 00000000 Inactivity threshold
0x26 38 TIME_INACT R/W 00000000 Inactivity time
0x27 39 ACT_INACT_CTL R/W 00000000 Axis enable control for activity and inactivity detection
0x28 40 THRESH_FF R/W 00000000 Free-fall threshold
0x29 41 TIME_FF R/W 00000000 Free-fall time
0x2A 42 TAP_AXES R/W 00000000 Axis control for single tap/double tap
0x2B 43 ACT_TAP_STATUS R 00000000 Source of single tap/double tap
0x2C 44 BW_RATE R/W 00001010 Data rate and power mode control
0x2D 45 POWER_CTL R/W 00000000 Power-saving features control
0x2E 46 INT_ENABLE R/W 00000000 Interrupt enable control
0x2F 47 INT_MAP R/W 00000000 Interrupt mapping control
0x30 48 INT_SOURCE R 00000010 Source of interrupts
0x31 49 DATA_FORMAT R/W 00000000 Data format control
0x32 50 DATAX0 R 00000000 X-Axis Data 0
0x33 51 DATAX1 R 00000000 X-Axis Data 1
0x34 52 DATAY0 R 00000000 Y-Axis Data 0
0x35 53 DATAY1 R 00000000 Y-Axis Data 1
0x36 54 DATAZ0 R 00000000 Z-Axis Data 0
0x37 55 DATAZ1 R 00000000 Z-Axis Data 1
0x38 56 FIFO_CTL R/W 00000000 FIFO control
0x39 57 FIFO_STATUS R 00000000 FIFO status

Tuesday, February 26, 13

The accelerometer chip has a bunch of data registers that we can read and write, all
described in the datasheet. Some registers allow us to configure how fast the accelerometer
measures, others allow us to detect taps and change the format of the accelerometer data.

Single-Register Read

 ADXL345

Rev. A | Page 17 of 36

I2C
With CS tied high to VDD I/O, the ADXL345 is in I2C mode,
requiring a simple 2-wire connection, as shown in .
The ADXL345 conforms to the UM10204 I2C-Bus Specification
and User Manual, Rev. 03—19 June 2007, available from NXP
Semiconductor. It supports standard (100 kHz) and fast (400 kHz)
data transfer modes if the bus parameters given in
and are met. Single- or multiple-byte reads/writes are
supported, as shown in . With the ALT ADDRESS pin
high, the 7-bit I2C address for the device is 0x1D, followed by
the R/

Figure 39

Table 11
Table 12

Figure 40

W bit. This translates to 0x3A for a write and 0x3B for a
read. An alternate I2C address of 0x53 (followed by the R/W bit)
can be chosen by grounding the ALT ADDRESS pin (Pin 12).
This translates to 0xA6 for a write and 0xA7 for a read.

There are no internal pull-up or pull-down resistors for any
unused pins; therefore, there is no known state or default state
for the CS or ALT ADDRESS pin if left floating or unconnected.
It is required that the CS pin be connected to VDD I/O and that
the ALT ADDRESS pin be connected to either VDD I/O or GND
when using I2C.

Due to communication speed limitations, the maximum output
data rate when using 400 kHz I2C is 800 Hz and scales linearly
with a change in the I2C communication speed. For example,
using I2C at 100 kHz would limit the maximum ODR to 200 Hz.
Operation at an output data rate above the recommended maxi-
mum may result in undesirable effect on the acceleration data,
including missing samples or additional noise.

PROCESSOR

D IN/OUT

D OUT

RP

VDD I/O

RPADXL345
CS

SDA

ALT ADDRESS

SCL

07
92
5-
00
8

Figure 39. I2C Connection Diagram (Address 0x53)

If other devices are connected to the same I2C bus, the nominal
operating voltage level of these other devices cannot exceed VDD I/O
by more than 0.3 V. External pull-up resistors, RP, are necessary for
proper I2C operation. Refer to the UM10204 I2C-Bus Specification
and User Manual, Rev. 03—19 June 2007, when selecting pull-up
resistor values to ensure proper operation.

Table 11. I2C Digital Input/Output
 Limit1
Parameter Test Conditions Min Max Unit
Digital Input
Low Level Input Voltage (VIL) 0.3 × VDD I/O V
High Level Input Voltage (VIH) 0.7 × VDD I/O V
Low Level Input Current (IIL) VIN = VDD I/O 0.1 µA
High Level Input Current (IIH) VIN = 0 V −0.1 µA
Digital Output
Low Level Output Voltage (VOL) VDD I/O < 2 V, IOL = 3 mA 0.2 × VDD I/O V
 VDD I/O ≥ 2 V, IOL = 3 mA 400 mV
Low Level Output Current (IOL) VOL = VOL, max 3 mA
Pin Capacitance fIN = 1 MHz, VIN = 2.5 V 8 pF

1 Limits based on characterization results; not production tested.

NOTES
1. THIS START IS EITHER A RESTART OR A STOP FOLLOWED BY A START.
2. THE SHADED AREAS REPRESENT WHEN THE DEVICE IS LISTENING.

MASTER START SLAVE ADDRESS + WRITE REGISTER ADDRESS

SLAVE ACK ACK ACK

MASTER START SLAVE ADDRESS + WRITE REGISTER ADDRESS

SLAVE ACK ACK ACK ACK

MASTER START SLAVE ADDRESS + WRITE REGISTER ADDRESS STOP

SLAVE ACK ACK

MASTER START

START1

START1SLAVE ADDRESS + WRITE REGISTER ADDRESS NACK STOP

SLAVE ACK ACK DATA

STOP

ACK

SINGLE-BYTE WRITE

MULTIPLE-BYTE WRITE

DATA

DATA

MULTIPLE-BYTE READ

SLAVE ADDRESS + READ

SLAVE ADDRESS + READ
ACK

DATA

DATA

DATA

STOP

NACK

ACK

SINGLE-BYTE READ

07
92
5-
03
3

Figure 40. I2C Device Addressing

addr+write[register addr+read[r]

Read device ID: [0xa6 0x00[0xa7 r]

Tuesday, February 26, 13

From the datasheet, we see how to send a single-register read to the accelerometer.
The diagram on the top is from the datasheet, and below is the Bus Pirate command we use
to perform this transaction.
First, we send a START bit, then the slave address and write bit.
Then we send the desired register address.
Then we send another START bit. (What, START again? Long story short, this is called a
“repeated START”, which allows us to change the direction of the conversation without having
to start a new transaction.)
Then, the same slave address, but with the read bit instead of the write bit.
Then we read a byte from the slave (the acceleromter).
Lastly, we send a STOP bit.

Read Device ID?

I2C>[0xa6 0x00[0xa7 r]
I2C START BIT
WRITE: 0xA6 ACK
WRITE: 0x00 ACK
I2C START BIT
WRITE: 0xA7 ACK
READ: 0xE5
NACK
I2C STOP BIT
I2C>

Tuesday, February 26, 13

And here’s what it looks like, through the Bus Pirate.

Cool, 0xE5 matches the device ID in the datasheet. We’re getting the right data from register
0 on the accelerometer.

 ADXL345

Rev. A | Page 17 of 36

I2C
With CS tied high to VDD I/O, the ADXL345 is in I2C mode,
requiring a simple 2-wire connection, as shown in .
The ADXL345 conforms to the UM10204 I2C-Bus Specification
and User Manual, Rev. 03—19 June 2007, available from NXP
Semiconductor. It supports standard (100 kHz) and fast (400 kHz)
data transfer modes if the bus parameters given in
and are met. Single- or multiple-byte reads/writes are
supported, as shown in . With the ALT ADDRESS pin
high, the 7-bit I2C address for the device is 0x1D, followed by
the R/

Figure 39

Table 11
Table 12

Figure 40

W bit. This translates to 0x3A for a write and 0x3B for a
read. An alternate I2C address of 0x53 (followed by the R/W bit)
can be chosen by grounding the ALT ADDRESS pin (Pin 12).
This translates to 0xA6 for a write and 0xA7 for a read.

There are no internal pull-up or pull-down resistors for any
unused pins; therefore, there is no known state or default state
for the CS or ALT ADDRESS pin if left floating or unconnected.
It is required that the CS pin be connected to VDD I/O and that
the ALT ADDRESS pin be connected to either VDD I/O or GND
when using I2C.

Due to communication speed limitations, the maximum output
data rate when using 400 kHz I2C is 800 Hz and scales linearly
with a change in the I2C communication speed. For example,
using I2C at 100 kHz would limit the maximum ODR to 200 Hz.
Operation at an output data rate above the recommended maxi-
mum may result in undesirable effect on the acceleration data,
including missing samples or additional noise.

PROCESSOR

D IN/OUT

D OUT

RP

VDD I/O

RPADXL345
CS

SDA

ALT ADDRESS

SCL

07
92
5-
00
8

Figure 39. I2C Connection Diagram (Address 0x53)

If other devices are connected to the same I2C bus, the nominal
operating voltage level of these other devices cannot exceed VDD I/O
by more than 0.3 V. External pull-up resistors, RP, are necessary for
proper I2C operation. Refer to the UM10204 I2C-Bus Specification
and User Manual, Rev. 03—19 June 2007, when selecting pull-up
resistor values to ensure proper operation.

Table 11. I2C Digital Input/Output
 Limit1
Parameter Test Conditions Min Max Unit
Digital Input
Low Level Input Voltage (VIL) 0.3 × VDD I/O V
High Level Input Voltage (VIH) 0.7 × VDD I/O V
Low Level Input Current (IIL) VIN = VDD I/O 0.1 µA
High Level Input Current (IIH) VIN = 0 V −0.1 µA
Digital Output
Low Level Output Voltage (VOL) VDD I/O < 2 V, IOL = 3 mA 0.2 × VDD I/O V
 VDD I/O ≥ 2 V, IOL = 3 mA 400 mV
Low Level Output Current (IOL) VOL = VOL, max 3 mA
Pin Capacitance fIN = 1 MHz, VIN = 2.5 V 8 pF

1 Limits based on characterization results; not production tested.

NOTES
1. THIS START IS EITHER A RESTART OR A STOP FOLLOWED BY A START.
2. THE SHADED AREAS REPRESENT WHEN THE DEVICE IS LISTENING.

MASTER START SLAVE ADDRESS + WRITE REGISTER ADDRESS

SLAVE ACK ACK ACK

MASTER START SLAVE ADDRESS + WRITE REGISTER ADDRESS

SLAVE ACK ACK ACK ACK

MASTER START SLAVE ADDRESS + WRITE REGISTER ADDRESS STOP

SLAVE ACK ACK

MASTER START

START1

START1SLAVE ADDRESS + WRITE REGISTER ADDRESS NACK STOP

SLAVE ACK ACK DATA

STOP

ACK

SINGLE-BYTE WRITE

MULTIPLE-BYTE WRITE

DATA

DATA

MULTIPLE-BYTE READ

SLAVE ADDRESS + READ

SLAVE ADDRESS + READ
ACK

DATA

DATA

DATA

STOP

NACK

ACK

SINGLE-BYTE READ

07
92
5-
03
3

Figure 40. I2C Device Addressing

Multiple-Register Read

addr+write[register addr+read[rr]

Read X acceleration: [0xa6 0x32[0xa7 rr]

Tuesday, February 26, 13

Here’s how to read consecutive registers. The datasheet says the chip will return the next
register in order, for every byte we read. So if we start at register 0x32 and read two bytes,
we’ll get the value for register 0x32 in the first byte we read, and the value for register 0x33
in the second byte we read. We could keep reading bytes and get the Y and Z axis data if we
wanted to...

Read X Acceleration?

I2C>[0xa6 0x32[0xa7 rr]
I2C START BIT
WRITE: 0xA6 ACK
WRITE: 0x32 ACK
I2C START BIT
WRITE: 0xA7 ACK
READ: 0x00
READ: ACK 0x00
NACK
I2C STOP BIT
I2C>

Tuesday, February 26, 13

Back to the Bus Pirate.
Hmmm, the bytes are coming back as zeros. That’s the default register value. No matter how
I orient the accelerometer, I get zeros. Something’s wrong.

Y U NO MEASURE?

 ADXL345

Rev. A | Page 25 of 36

If the link bit is not set, the AUTO_SLEEP feature is disabled
and setting the AUTO_SLEEP bit does not have an impact on
device operation. Refer to the Link Bit section or the Link Mode
section for more information on utilization of the link feature.

When clearing the AUTO_SLEEP bit, it is recommended that the
part be placed into standby mode and then set back to measure-
ment mode with a subsequent write. This is done to ensure that
the device is properly biased if sleep mode is manually disabled;
otherwise, the first few samples of data after the AUTO_SLEEP
bit is cleared may have additional noise, especially if the device
was asleep when the bit was cleared.

Measure Bit
A setting of 0 in the measure bit places the part into standby mode,
and a setting of 1 places the part into measurement mode. The
ADXL345 powers up in standby mode with minimum power
consumption.

Sleep Bit
A setting of 0 in the sleep bit puts the part into the normal mode
of operation, and a setting of 1 places the part into sleep mode.
Sleep mode suppresses DATA_READY, stops transmission of data
to FIFO, and switches the sampling rate to one specified by the
wakeup bits. In sleep mode, only the activity function can be used.
When the DATA_READY interrupt is suppressed, the output
data registers (Register 0x32 to Register 0x37) are still updated
at the sampling rate set by the wakeup bits (D1:D0).

When clearing the sleep bit, it is recommended that the part be
placed into standby mode and then set back to measurement
mode with a subsequent write. This is done to ensure that the
device is properly biased if sleep mode is manually disabled;
otherwise, the first few samples of data after the sleep bit is
cleared may have additional noise, especially if the device was
asleep when the bit was cleared.

Wakeup Bits
These bits control the frequency of readings in sleep mode as
described in Table 20.

Table 20. Frequency of Readings in Sleep Mode
Setting

D1 D0 Frequency (Hz)
0 0 8
0 1 4
1 0 2
1 1 1

Register 0x2E—INT_ENABLE (Read/Write)
D7 D6 D5 D4
DATA_READY SINGLE_TAP DOUBLE_TAP Activity
D3 D2 D1 D0
Inactivity FREE_FALL Watermark Overrun

Setting bits in this register to a value of 1 enables their respective
functions to generate interrupts, whereas a value of 0 prevents
the functions from generating interrupts. The DATA_READY,
watermark, and overrun bits enable only the interrupt output;
the functions are always enabled. It is recommended that interrupts
be configured before enabling their outputs.

Register 0x2F—INT_MAP (R/W)
D7 D6 D5 D4
DATA_READY SINGLE_TAP DOUBLE_TAP Activity
D3 D2 D1 D0
Inactivity FREE_FALL Watermark Overrun

Any bits set to 0 in this register send their respective interrupts to
the INT1 pin, whereas bits set to 1 send their respective interrupts
to the INT2 pin. All selected interrupts for a given pin are OR’ed.

Register 0x30—INT_SOURCE (Read Only)
D7 D6 D5 D4
DATA_READY SINGLE_TAP DOUBLE_TAP Activity
D3 D2 D1 D0
Inactivity FREE_FALL Watermark Overrun

Bits set to 1 in this register indicate that their respective functions
have triggered an event, whereas a value of 0 indicates that the
corresponding event has not occurred. The DATA_READY,
watermark, and overrun bits are always set if the corresponding
events occur, regardless of the INT_ENABLE register settings,
and are cleared by reading data from the DATAX, DATAY, and
DATAZ registers. The DATA_READY and watermark bits may
require multiple reads, as indicated in the FIFO mode descriptions
in the FIFO section. Other bits, and the corresponding interrupts,
are cleared by reading the INT_SOURCE register.

Register 0x31—DATA_FORMAT (Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0
SELF_TEST SPI INT_INVERT 0 FULL_RES Justify Range

The DATA_FORMAT register controls the presentation of data
to Register 0x32 through Register 0x37. All data, except that for
the ±16 g range, must be clipped to avoid rollover.

SELF_TEST Bit
A setting of 1 in the SELF_TEST bit applies a self-test force to
the sensor, causing a shift in the output data. A value of 0 disables
the self-test force.

SPI Bit
A value of 1 in the SPI bit sets the device to 3-wire SPI mode,
and a value of 0 sets the device to 4-wire SPI mode.

Tuesday, February 26, 13

Flipping through the datasheet...
By default, the MEASURE bit is zero. When the MEASURE bit is zero, the chip does not
measure acceleration. Most chips do this -- they come up in low-power mode, and wait for a
command to turn on and do their work. This way, it’s easier for low-power devices (mobile
phones, video game controllers, whatever) to turn on and off quickly, and avoid burning any
more battery power than necessary.

Device Setup

ADXL345

Rev. A | Page 24 of 36

ACT_x Enable Bits and INACT_x Enable Bits
A setting of 1 enables x-, y-, or z-axis participation in detecting
activity or inactivity. A setting of 0 excludes the selected axis from
participation. If all axes are excluded, the function is disabled.
For activity detection, all participating axes are logically OR’ed,
causing the activity function to trigger when any of the partici-
pating axes exceeds the threshold. For inactivity detection, all
participating axes are logically AND’ed, causing the inactivity
function to trigger only if all participating axes are below the
threshold for the specified time.

Register 0x28—THRESH_FF (Read/Write)

The THRESH_FF register is eight bits and holds the threshold
value, in unsigned format, for free-fall detection. The acceleration on
all axes is compared with the value in THRESH_FF to determine if
a free-fall event occurred. The scale factor is 62.5 mg/LSB. Note
that a value of 0 mg may result in undesirable behavior if the free-
fall interrupt is enabled. Values between 300 mg and 600 mg
(0x05 to 0x09) are recommended.

Register 0x29—TIME_FF (Read/Write)

The TIME_FF register is eight bits and stores an unsigned time
value representing the minimum time that the value of all axes
must be less than THRESH_FF to generate a free-fall interrupt.
The scale factor is 5 ms/LSB. A value of 0 may result in undesirable
behavior if the free-fall interrupt is enabled. Values between 100 ms
and 350 ms (0x14 to 0x46) are recommended.

Register 0x2A—TAP_AXES (Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 Suppress TAP_X

enable
TAP_Y
enable

TAP_Z
enable

Suppress Bit
Setting the suppress bit suppresses double tap detection if
acceleration greater than the value in THRESH_TAP is present
between taps. See the Tap Detection section for more details.

TAP_x Enable Bits
A setting of 1 in the TAP_X enable, TAP_Y enable, or TAP_Z
enable bit enables x-, y-, or z-axis participation in tap detection.
A setting of 0 excludes the selected axis from participation in
tap detection.

Register 0x2B—ACT_TAP_STATUS (Read Only)
D7 D6 D5 D4 D3 D2 D1 D0
0 ACT_X

source
ACT_Y
source

ACT_Z
source

Asleep TAP_X
source

TAP_Y
source

TAP_Z
source

ACT_x Source and TAP_x Source Bits
These bits indicate the first axis involved in a tap or activity
event. A setting of 1 corresponds to involvement in the event,
and a setting of 0 corresponds to no involvement. When new
data is available, these bits are not cleared but are overwritten by
the new data. The ACT_TAP_STATUS register should be read
before clearing the interrupt. Disabling an axis from participation
clears the corresponding source bit when the next activity or
single tap/double tap event occurs.

Asleep Bit
A setting of 1 in the asleep bit indicates that the part is asleep,
and a setting of 0 indicates that the part is not asleep. This bit
toggles only if the device is configured for auto sleep. See the
AUTO_SLEEP Bit section for more information on autosleep
mode.

Register 0x2C—BW_RATE (Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 LOW_POWER Rate

LOW_POWER Bit
A setting of 0 in the LOW_POWER bit selects normal operation,
and a setting of 1 selects reduced power operation, which has
somewhat higher noise (see the Power Modes section for details).

Rate Bits
These bits select the device bandwidth and output data rate (see
Table 7 and Table 8 for details). The default value is 0x0A, which
translates to a 100 Hz output data rate. An output data rate should
be selected that is appropriate for the communication protocol
and frequency selected. Selecting too high of an output data rate with
a low communication speed results in samples being discarded.

Register 0x2D—POWER_CTL (Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0
0 0 Link AUTO_SLEEP Measure Sleep Wakeup

Link Bit
A setting of 1 in the link bit with both the activity and inactivity
functions enabled delays the start of the activity function until
inactivity is detected. After activity is detected, inactivity detection
begins, preventing the detection of activity. This bit serially links
the activity and inactivity functions. When this bit is set to 0,
the inactivity and activity functions are concurrent. Additional
information can be found in the Link Mode section.

When clearing the link bit, it is recommended that the part be
placed into standby mode and then set back to measurement
mode with a subsequent write. This is done to ensure that the
device is properly biased if sleep mode is manually disabled;
otherwise, the first few samples of data after the link bit is cleared
may have additional noise, especially if the device was asleep
when the bit was cleared.

AUTO_SLEEP Bit
If the link bit is set, a setting of 1 in the AUTO_SLEEP bit enables
the auto-sleep functionality. In this mode, the ADXL345 auto-
matically switches to sleep mode if the inactivity function is
enabled and inactivity is detected (that is, when acceleration is
below the THRESH_INACT value for at least the time indicated
by TIME_INACT). If activity is also enabled, the ADXL345
automatically wakes up from sleep after detecting activity and
returns to operation at the output data rate set in the BW_RATE
register. A setting of 0 in the AUTO_SLEEP bit disables automatic
switching to sleep mode. See the description of the Sleep Bit in
this section for more information on sleep mode.

Tuesday, February 26, 13

So how do we turn on the MEASURE bit? The datasheet says that bit is in register 2d, so we’ll
need to write the correct value that register inside the accelerometer, via I2C. The MEASURE
bit is the third bit (starting from zero), and all the other bits can be zero (according to the
data sheet). So I need to write 0x08 to this register to make the chip measure acceleration.

Single-Register Write

addr+write[register]

 ADXL345

Rev. A | Page 17 of 36

I2C
With CS tied high to VDD I/O, the ADXL345 is in I2C mode,
requiring a simple 2-wire connection, as shown in .
The ADXL345 conforms to the UM10204 I2C-Bus Specification
and User Manual, Rev. 03—19 June 2007, available from NXP
Semiconductor. It supports standard (100 kHz) and fast (400 kHz)
data transfer modes if the bus parameters given in
and are met. Single- or multiple-byte reads/writes are
supported, as shown in . With the ALT ADDRESS pin
high, the 7-bit I2C address for the device is 0x1D, followed by
the R/

Figure 39

Table 11
Table 12

Figure 40

W bit. This translates to 0x3A for a write and 0x3B for a
read. An alternate I2C address of 0x53 (followed by the R/W bit)
can be chosen by grounding the ALT ADDRESS pin (Pin 12).
This translates to 0xA6 for a write and 0xA7 for a read.

There are no internal pull-up or pull-down resistors for any
unused pins; therefore, there is no known state or default state
for the CS or ALT ADDRESS pin if left floating or unconnected.
It is required that the CS pin be connected to VDD I/O and that
the ALT ADDRESS pin be connected to either VDD I/O or GND
when using I2C.

Due to communication speed limitations, the maximum output
data rate when using 400 kHz I2C is 800 Hz and scales linearly
with a change in the I2C communication speed. For example,
using I2C at 100 kHz would limit the maximum ODR to 200 Hz.
Operation at an output data rate above the recommended maxi-
mum may result in undesirable effect on the acceleration data,
including missing samples or additional noise.

PROCESSOR

D IN/OUT

D OUT

RP

VDD I/O

RPADXL345
CS

SDA

ALT ADDRESS

SCL

07
92
5-
00
8

Figure 39. I2C Connection Diagram (Address 0x53)

If other devices are connected to the same I2C bus, the nominal
operating voltage level of these other devices cannot exceed VDD I/O
by more than 0.3 V. External pull-up resistors, RP, are necessary for
proper I2C operation. Refer to the UM10204 I2C-Bus Specification
and User Manual, Rev. 03—19 June 2007, when selecting pull-up
resistor values to ensure proper operation.

Table 11. I2C Digital Input/Output
 Limit1
Parameter Test Conditions Min Max Unit
Digital Input
Low Level Input Voltage (VIL) 0.3 × VDD I/O V
High Level Input Voltage (VIH) 0.7 × VDD I/O V
Low Level Input Current (IIL) VIN = VDD I/O 0.1 µA
High Level Input Current (IIH) VIN = 0 V −0.1 µA
Digital Output
Low Level Output Voltage (VOL) VDD I/O < 2 V, IOL = 3 mA 0.2 × VDD I/O V
 VDD I/O ≥ 2 V, IOL = 3 mA 400 mV
Low Level Output Current (IOL) VOL = VOL, max 3 mA
Pin Capacitance fIN = 1 MHz, VIN = 2.5 V 8 pF

1 Limits based on characterization results; not production tested.

NOTES
1. THIS START IS EITHER A RESTART OR A STOP FOLLOWED BY A START.
2. THE SHADED AREAS REPRESENT WHEN THE DEVICE IS LISTENING.

MASTER START SLAVE ADDRESS + WRITE REGISTER ADDRESS

SLAVE ACK ACK ACK

MASTER START SLAVE ADDRESS + WRITE REGISTER ADDRESS

SLAVE ACK ACK ACK ACK

MASTER START SLAVE ADDRESS + WRITE REGISTER ADDRESS STOP

SLAVE ACK ACK

MASTER START

START1

START1SLAVE ADDRESS + WRITE REGISTER ADDRESS NACK STOP

SLAVE ACK ACK DATA

STOP

ACK

SINGLE-BYTE WRITE

MULTIPLE-BYTE WRITE

DATA

DATA

MULTIPLE-BYTE READ

SLAVE ADDRESS + READ

SLAVE ADDRESS + READ
ACK

DATA

DATA

DATA

STOP

NACK

ACK

SINGLE-BYTE READ

07
92
5-
03
3

Figure 40. I2C Device Addressing

data

Set MEASURE bit in POWER_CTL register: [0xa6 0x2d 0x08]

Tuesday, February 26, 13

From the datasheet, here’s how to write to a register in the accelerometer, via I2C. It turns
out to be easier than *reading* registers!

Double-Check Your Writes
I2C>[0xa6 0x2d 0x08]
I2C START BIT
WRITE: 0xA6 ACK
WRITE: 0x2D ACK
WRITE: 0x08 ACK
I2C STOP BIT
I2C>[0xa6 0x2d[0xa7 r]
I2C START BIT
WRITE: 0xA6 ACK
WRITE: 0x2D ACK
I2C START BIT
WRITE: 0xA7 ACK
READ: 0x08
NACK
I2C STOP BIT
I2C>

Tuesday, February 26, 13

Trying this on the Bus Pirate...
First, I write the value to the POWER_CTL register. See where the 0x08 is sent to register
0x2d?
Then, I read the value back, to verify that it works.
Yep, the data (0x08) is in register 0x2d.

If you’re doing something wrong, writing or reading registers, this is the easiest way to tell.

Read X Acceleration!

I2C>[0xa6 0x32[0xa7 rr]
I2C START BIT
WRITE: 0xA6 ACK
WRITE: 0x32 ACK
I2C START BIT
WRITE: 0xA7 ACK
READ: 0x7C
READ: ACK 0x00
NACK
I2C STOP BIT
I2C>

Tuesday, February 26, 13

Now, let’s try reading the X acceleration value again.

That’s better! Multiple reads, different values in different positions. The first read is from
register 0x32, and the second read is from the next register, 0x33. 0x32 holds the low
portion of the X acceleration value, and 0x33 holds the high portion of the X acceleration
value.

Known-Good Commands

Write Power Control register,
turn on MEASURE bit.

[0xa6 0x2d 0x08]

Read device ID
(register 0x00)

[0xa6 0x00[0xa7 r]

Read X acceleration
(registers 0x32, 0x33)

[0xa6 0x32[0xa7 rr]

Tuesday, February 26, 13

So now we know how to initialize the accelerometer, to make it start measuring acceleration.
We know how to read the device ID (so we know it’s the ADXL345 accelerometer).
And we know how to read X acceleration values from the accelerometer.

Now, we can go to our microcontroller of choice and write some code, and we’ll know that
the I2C commands we’re sending are correct!

SparkFun.com

Victory!

Go Forth and Measure.

Tuesday, February 26, 13

Thanks for listening. If you have further questions or want to know some of the more gory
details of I2C that I couldn’t talk about in twenty minutes, feel free to ask now, or find me
after the “official” portion of tonight’s Dorkbot.

