Sailing the 12Cs

with the Bus Pirate

£

ShareBrained Iechnology

Jared Boone
DorkbotPDX 0x08 - January 30, 2012

uuuuuuuuuuuuuuuuuuuuu

12G77

* “Inter-Integrated Circuit” bus.

e [ruth in naming: provides a way for integrated

circults (chips) to communicate.

e \/ery simple. So simple it costs virtually nothing to
implement inside a chip.

e PCl, USB, even PC-style serial ports are more
complicated and expensive to put in a chip. And
they're all overkill for chip-chip communication.

Tuesday, February 26, 13

So what is 12C? It’s mmu n bus des g ed specifically for chips to communicate with each other, very inexpensively. The best way to make something inexpensive is to make it

simple. And 12C is de f tely s mpI I *almost* the simplest form of di g I ommunication conceivable. Way simpler than PCI or PCI Express. Way simpler than USB. Simpler, even,

PC serial port.

than a

What Speaks 1207

 Many integrated circuits -- sensors, memories,
chips that need to be configured/controlled
externally.

* Most microcontrollers speak [2C, too. The Arduino
(AVR8), ARMs, MSP430s, PICs, you name it!

Tuesday, February 26, 13

OK, so it’s simple. But what is it good for? A lot of fun and interesting chips implement 12C, as do virtually all the microcontroller chips available. Here are some examples:

Sensors

Tuesday, February 26, 13
Analog Devices ADXL345 three-axis accelerometer

Honeywell HMC5843 three-axis magnetometer (compass)

Invensense ITG-3200 three-axis gyroscope

Many others available -- temperature, humidity, pressure, light/color...

AVDD

VMID(

AGND

MICBIAS

RLINEIN

MICIN(

LUINEINC

Tuesday, February 26, 13
Audio codecs, for high-quality audio.

Stereo A

cse

) SDIN
SCLK
MODE

udio Codec

<)

-
S

'y

[CONTROL INTERFACE |

RN ¥
» | JL] Bypass
J MUTE .“
—<[[T ATTEN
‘— - . . - wuTe N I‘
[- <r = J \ ||
& | Sude TlLrw!' \
" b
v - SO\ A l |
N VoL l { wiTe) | s
.‘___J s ' NUX M ADC —p! .—yl DAC MUTE J 3
+12 10-34.508, 1.508 [VTE1P \, ' | " | &
3 Steps
o ~—p o | DIGITAL
cetncll] FILTERS |
SELI / r S
j Vu}b ADC > ' » DAC) wote Lp T
e vc-.} [wiiE) \ L .

+12 10 -34 548, 1.5¢
Steps

| —

\
mvwolfson
WM8731
{ HPVDD
l HPGND
‘, » RHPOUT
|
‘) ROUT
O LOUT

—»Tm—.l ooven -9 LHPOUT

+6 0 - T308

1 0B Steps

12C is not used for the audio signal, but is used for configuring signal routing, input and output volumes, etc.

h 4
[osc [e—r>b onvwoen [Hipl Cecen l DIGTAL AUDIO INTERFACE]

] '_lt;vul) | lCn‘H n" T ‘ i ‘ l

* v v Y - A
x r- — (s (s} -

o o 2 < & 5 &€ < 3 8 £

> o [} a — Q -4 a > >]
= ¥ Q Q @ g 9 o a 3
< - < < 8 a a a
= o c o < <

Electrically-Erasable ROM

_/
AO 11 8
A1]2 @ 7
mls X s
N
Vss [4 5

uuuuuuuuuuuuuuuuuuuuu
memory:

Serial EEPROMSs and flash for persisting more data than your microcontroller allows.

Courtesy of Microchip

Vcc
WP
SCL

SDA

Analog to Digital Converter

Tuesday, February 26, 13
Data converters:

Low-speed analog-to-digital and digital-to-analog converters for capturing or generating analog signals (if your microcontroller doesn’t have enough converters, or they’re not very good).

|2C-controlled RGB LED

f D'\
THING) e
blinkm.thingm.com
PUWR [2C
@ & d cC

D OO O C

SparkFun.com

Tuesday, February 26, 13
LEDs like the BlinkM:

For generating a complex, multi-color, multi-LED light show from your microcontroller.

How Simple [s [t?

e Serial bus -- transfers data one bit at a time.

* No fancy self-clocking scheme (like USB or even
PC-style serial ports). Clock signal is a separate
signal from the data.

* Only two signals/wires to connect chips to each
other. (If they’re on the same board, that is...)

Tuesday, February 26, 13
So 12C is a simple serial bus. It t s data one bit at a time.

What makes it simpler than o h ial bus Ik USB or a PC serial por USB nd serial port ky ncodings and hardware so the receiving device’s hardw synchronize
ock’) s

with the transmitted data. That h rdw expenswe to put ina chlp, SO ead, h 12C d g added a separate synchronization (or “c I
the chip a lot simpler.

g ITh mk h hardware in

Shared Bus

2C

\ 4 A 4 A 4 A 4

Sensor Sensor | | Memory ADC

Tuesday, February 26, 13

12C is a shared bus. You can connect lots of devices to the same bus, and communicate with them individually. With only two signals shared between all the devices, how do the devices on
the bus avoid speaking at the same time?

To start with, 12C uses a master/slave model. The master (usually the microcontroller) starts ALL conversations. The rest of the devices on the bus are slaves, and only respond to the
master’s requests.

OK, so the master is in charge of the bus, initiating all requests. But, at the start of a request, how does the master indicate which device it wants to speak with? At the beginning of each
request, the master sends an address over the bus. Each device has a unique address, and only the device which matches that address will respond.

uC

Unique Addresses

<

uuuuuuuuuuuuuuuuuuuuu

12C
Sensor Sensor | | Memory ADC
addr=1d | | addr=53 | | addr=/2 | | addr=48

_

J

_

J

_

J

_

~N

J

Address Conflict

ek 2C

Sensor Sensor | | Memory ADC
addr=1d | | addr=1d | | addr=/2 | | addr=48

. /. /. /. J

Tuesday, February 26, 13

The problem is with how chips get their addresses. Remember, 12C is *cheap*. Most chips with I12C interfaces have a hard-coded address. For instance, the Analog Devices ADXL345
accelerometer chip has an address of 1D hexadecimal. ALL ADXL345s have that same address. So if you have two of those chips on the same 12C bus, they’ll both respond when you try to
talk to address 1D, and things won’t work right.

Separate Buses

-

~N

uC

uuuuuuuuuuuuuuuuuuuuu

Sensor
addr=1d
2C I
120
Sensor Memory ADC
addr=1d addr=72 | | addr=48

_

J

Device Reconfiguration

2C

T] 1 |

_) 4 N\ (N\ N\ ()

Sensor Sensor | | Memory ADC
addr=1d | | addr=53 | | addr=/2 | | addr=48

. /. /. /. J

l I
0 1

Tuesday, February 26, 13

Or, some 12C chips have configuration pins that allow you to set the address to one of several choices. In this case, we can configure each of the ADXL345 sensor chips to operate on one of
two addresses (1d hex, or 53 hex). Of course, if we had THREE ADXL345s on the same bus, we’d once again have a conflict, since we can choose only one of TWO addresses for those
chips.

[ransactions

A request from the master, to a slave device:

* Master sends slave device address.

 Master sends direction of transfer -- “read” or
“write”.

e Slave (if any) responds to “go ahead”.

 Master or slave transmits data (depending on
direction specified above).

* Master ends transaction.

Tuesday, February 26, 13
12C communication happens in units called “transactions”, which involve transferring data between the master and one of the slaves.

Each transaction starts with the address of the device the master wants to talk to, and the direction of the data transfer (“read” or “write”). Once the address and direction is sent, the

addressed device will send an acknowledgement. If no device recognizes the address, no acknowledgement is sent

If a slave responded, the master and slave transfer data.

Single-Byte Transmit

Master Slaves
A transaction Is starting!

(We're listening...)
| am transmitting to device 72!

\
Device 72: OK, ready!

Other devices: (crickets)

Here is a byte of datal
y ~_

Device 72: OK, ready for more!
The transaction is done!

uuuuuuuuuuuuuuuuuuuuu

Multi-Byte Transmit

Master Slaves
START.
Address=7?
Direction=Write

— Device 72: ACK
Data byte —

~ Device 72: ACK
Data byte =

—~ Device 72: NAK
STOP. <

uuuuuuuuuuuuuuuuuuuuu

eeeeeeeeeeeeee

ransaction, this time with better 12C terminology:

Multl-Byte Recelve

Master Slave

START. Address=72, Direction=Read
ACK (ready for more)

~ Data byte

ACK (ready for more) =

~ Data byte

NAK (I've had enough) <
STOP

Tuesday, February 26, 13
Here, we send data in the other direction, from the slave to the master.

Pretty much the same stuff, but in the opposite direction... START bit, address, direction, acknowledgement after every byte, and the STOP bit.

Bus Pirate

Dangerous Prototypes, available from SeeedStudio

Tuesday, February 26, 13

Talking with 12C devices using a microcontroller can be painful -- keeping track of START and STOP bits and acknowledgements... The Bus Pirate is the easiest way I've seen to get to know

a new 12C device. You don’t have to write any code to play with a new 12C device, and you can be sure the Bus Pirate is doing 12C right. So all you have to do is understand the chip you’re
communicating with.

Dangerous Prototypes designed the Bus Pirate, and they sell it through SeeedStudio (yes, that’s THREE “e”s.) It interfaces directly with computer via USB, shows up as a serial port. Via the

serial port, you choose options from a menu and issue commands to transmit over 12C. It can supply power to target device (either 3.3 or 5 volts), so you really don’t need anything else to
play with an 12C chip.

It’s good for a lot more than 12C, too...

Bus Pirate “Protocols”

o [2C, SPI, raw two- and three-wire serial

e Dallas/Maxim 1-WIRE

* UART (e.g. PC serial port)

* HD44 780 LCD (requires adapter board)

 Supports AVR ISP programming via SPI w/AVRDude.
* PWM (servo motors and other stuft!)

» ADC voltage sampling (very slow oscilloscope)

* Alternate firmwares do a bunch of other cool stuff.

uuuuuuuuuuuuuuuuuuuuu

Bus Pirate Target Interface

Description (Bus Pirate is the master)
Master data out, slave in (SPI, JTAG), Serial data (1-Wi), TX*

MOSI (UART)

CLK Clock signI, JTAG, KB)

MISO Master data in, slave out (SPI, JTAG) RX (UART)
CS* Chip select (SPI), TMS (JTAG)

AUX Auxiliary 10, frequency probe, pulse-width modulator
ADC Voltage measurement probe (max 6volts)

Vpu Voltage input for on-board pull-up resistors (0-5volts).
+3.3v +3.3volt switchable power supply

+5.0v +5volt switchable power supply

GND Ground, connect to ground of test circuit

dangerousprototypes.com

Tuesday, February 26, 13
Here’s the signals available from the Bus Pirate. I've outlined the 12C-specific signals. You can see the other buses and signals it supports, and imagine how to hook it up to a JTAG or SPI or

UART device.

e ().

Useful Accessories

fer

uuuuuuuuuuuuuuuuuuuuu

" stake pin |

umpers! Short bits of wire with

nale pin con

nectors on both ends.

e The SeeedStudio Bus Pirate Probe Kit is not so
great. The clips are qui

* Reliable USB cable. (Lo

e uncooperative...

ng story...)

Bus Pirate “Open’

* Mac OS Terminal
screen /dev/tty.usbserial-<something> 115200

e [iNUX:
screen /dev/tty<something> 115200

* Windows: | have no idea. | hear HyperTerminal is no
longer included as of Vista...

Tuesday, February 26, 13
How do you communicate with the Bus Pirate? Just like any other serial port, though by default, it runs at 115 kilobaud.

Bus Pirate "Login”

* Press ENTER/RETURN for a prompt.
 Default mode Is “HiZ”. Prompt indicates bus mode.
o “2” command gets you the menu.

uuuuuuuuuuuuuuuuuuuuu

Bus Pirate Menu

General Protocol interaction
? This help (0) List current macros
=X/|X Converts X/reverse X (X) Macro X

~ Selftest [Start

Reset the BP] Stop

$ Jump to bootloader { Start with read

&/ % Delay 1 us/ms } Stop

a/A/@ AUXPIN (low/HI/READ) "abc" Send string

b Set baudrate 123

c/C AUX assignment (aux/CS) Ox123

d/D Measure ADC (once/CONT.) Ob110 Send value

f Measure frequency r Read

g/S Generate PWM/Servo / CLK hi

h Commandhistory \ CLK 1o

i Versioninfo/statusinfo A CLK tick

1/L Bitorder (msb/LSB) - DAT hi

m Change mode _ DAT 1o

0 Set output type : DAT read

p/P Pullup resistors (off/0N) ! Bit read

S Script engine : Repeat e.g. r:10

Vv Show volts/states ; Bits to read/write e.g. 0x55;2
w/W PSU (off/ON) <X>/<x= >/<0> Usermacro x/assign x/list all
HiZ>

Tuesday, February 26, 13
Here’s the main menu. There’s lots of options | haven’t used yet -- the ability to bit-bang signals, sample analog voltages, control servos, etc. etc.

Three-Axis Accelerometer

Tuesday, February 26, 13

Demo time.
| had this breakout board laying around from a car racing project | built a couple of years ago. It’'s an Analog Devices ADXL345 breakout board from SparkFun. Who doesn’t love
accelerometers?

Board Schematic

UCC UCC
A
Ul T GND 401
—2 | upp INT1 S INT1 Zla
CS Sla
2 9 INT2 INT1 4|
GND INT2 1=
ShA 71l o
o— | 6NDL N/Cc Ll SCL s
GND I
o> | GND2 spo £ S00 JP1
& 1 uss spa L3 S0A
LS L 2 1 cs scL (—tSCL
ADXL 345

Tuesday, February 26, 13

Here’s the breakout board schematic. The I12C signals are SDA (data) and SCL (clock). We also
need to hook up power. Reading the datasheet, | see the chip can accept supply voltage up to
3.6 volts, so we’ll use the Bus Pirate’s 3.3 volt supply.

Also in the datasheet: This chip will operate on two different kinds of buses -- 12C and SPI.
To select 12C, the CS pin on the chip must be at the supply voltage when the chip is turned
on. The Bus Pirate has a couple of spare signals, so I’'ll use one of those to control the chip’s
CS pin.

Bus Pirate Connections

Bus Pirate Target Board
GND GND
CLK (12C:SCL) SCL
MOSI (12C:SDA) SDA
CS CS (for 12C bus mode)
+3V3 VCC (2.0 to 3.6V only!)
AUX looped back to VPU

Tuesday, February 26, 13
Here’s how | connected the Bus Pirate to the board.

12C requires you to connect two resistors to make the bus work. One goes between SCL and
the power supply, and the other between SDA and the power supply. It’s too long of a story
to get into right now. But regardless, the Bus Pirate provides controllable pull-up resistors, so
you don’t need to wire them up yourself if your 12C circuit doesn’t already have them. You do
need to supply power to the pull-up resistors (via the Bus Pirate’s VPU pin), so | played a little
trick, using one of the Bus Pirate’s extra signals (AUX) to drive power into the VPU pin.
(Apparently, they’re eliminating the need for this trick in the forthcoming Bus Pirate v4.)

Enter 12C Mode

HiZ>m

HiZ

1-WIRE

UART

I2C

SPI

2WIRE

3WIRE

LCD

exit(without change)

X ooNOuULIT DS WN -

(1)>4

Set speed:
1. ~5KHz
2. ~50KHz
3. ~100KHz
4. ~400KHz
(1)>1

Ready

I2C>

Tuesday, February 26, 13

Slow is good when you’re starting out with a new chip. | usually start with 5KHz —- still way
faster than | can type. At 5KHz, | don’t have to worry about how bad or ugly my wiring is, or
how fast the chip can communicate via I12C -- it should just work.

Turn On The Things!

I2C>cC

a/A/@ controls AUX pin
I2C>A

AUX HIGH

I12C>C

a/A/@ controls CS pin
I2C>A

AUX HIGH

I2C>P

Pull-up resistors ON
I2C>W

POWER SUPPLIES ON
12C>

Tuesday, February 26, 13
Here, I’'m setting up the 12C pull-up resistor power, setting the chip’s bus mode, and turning

on the power to the chip.

Turn on the AUX pin, to power the 12C pull-up resistors.
Turn on the CS pin, to set the chip’s bus mode.

Enable the Bus Pirate’s 12C pull-up resistors.

Turn on the Bus Pirate’s power supplies.

The chip now has power, is in 12C mode, and should respond to 12C commands.

Address Search

I2C>(1)
Searching I2C address space. Found devices at:
OxA6 (Ox53 W) OxA7(0x53 R)

I2C>

Reveals chip responding at:
OxAb (address 0xo3 + write)
OxA7 (address 0x53 + read)

Tuesday, February 26, 13
The Bus Pirate can scan the 12C bus, looking for slave chips. It’ll then print out what it found.

A chip’s address is usually in the data sheet, but it can be hard to find. Letting the Bus Pirate
find your chip’s address is a whole lot easier...

The Bus Pirate printed out the full eight-bit address+direction values for reading (Oxa7) and
writing (0xa6), and also shows the address value by itself (0x53).

Tuesday, February 26, 13

REGISTER MAP

Now What?

Table 19.
Address
Hex Dec Name Type | ResetValue Description
0x00 0 DEVID R 11100101 Device ID
0x01 to 0x1C 1t028 | Reserved Reserved; do not access
0x1D 29 THRESH_TAP R/W 00000000 Tap threshold
Ox1E 30 OFSX R/W | 00000000 X-axis offset
Ox1F 31 OFSY R/W | 00000000 Y-axis offset
0x20 32 OFSZ R/W 00000000 Z-axis offset
0x21 33 DUR R/W 00000000 Tap duration
0x22 34 Latent R/W 00000000 Tap latency
0x23 35 Window R/W 00000000 Tap window
0x24 36 THRESH_ACT R/W 00000000 Activity threshold
0x25 37 THRESH_INACT R/W 00000000 Inactivity threshold
0x26 38 TIME_INACT R/W 00000000 Inactivity time
0x27 39 ACT_INACT_CTL R/W 00000000 Axis enable control for activity and inactivity detection
0x28 40 THRESH_FF R/W 00000000 Free-fall threshold
0x29 41 TIME_FF R/W 00000000 Free-fall time
0x2A 42 TAP_AXES R/W 00000000 Axis control for single tap/double tap
0x2B 43 ACT_TAP_STATUS R 00000000 Source of single tap/double tap
0x2C 44 BW_RATE R/W 00001010 Data rate and power mode control
0x2D 45 POWER_CTL R/W 00000000 Power-saving features control
0x2E 46 INT_ENABLE R/W 00000000 Interrupt enable control
0x2F 47 INT_MAP R/W 00000000 Interrupt mapping control
0x30 48 INT_SOURCE R 00000010 Source of interrupts
0x31 49 DATA_FORMAT R/W 00000000 Data format control
0x32 50 DATAXO R 00000000 X-Axis Data 0
0x33 51 DATAX1 R 00000000 X-Axis Data 1
0x34 52 DATAYO R 00000000 Y-Axis Data O
0x35 53 DATAY1 R 00000000 Y-Axis Data 1
0x36 54 DATAZO R 00000000 Z-Axis Data 0
0x37 55 DATAZ1 R 00000000 Z-Axis Data 1
0x38 56 FIFO_CTL R/W 00000000 FIFO control
0x39 57 FIFO_STATUS R 00000000 FIFO status

The accelerometer chip has a bunch of data registers that we can read and write, all
described in the datasheet. Some registers allow us to configure how fast the accelerometer
measures, others allow us to detect taps and change the format of the accelerometer data.

Single-Register Read

SINGLE-BYTE READ

MASTER

START [| SLAVE ADDRESS + WRITE

REGISTER ADDRESS

START| | SLAVE ADDRESS +READ

NAck | | sTop

SLAVE

ACK

CK

ACK

DATA

|

-] regser I adrsreao 1

Read device ID: [Oxab6 Ox00[Oxa/ r]

Tuesday, February 26, 13
From the datasheet, we see how to send a single-register read to the accelerometer.

The diagram on the top is from the datasheet, and below is the Bus Pirate command we use

to perform this transaction.

First, we send a START bit, then the slave address and write bit.

\

Then we send the desired register address.
Then we send another START bit. (What, START again? Long story short, this is called a

“repeated START”, which allows us to change the direction of the conversation without having

to start a

new transaction.)

Then, the same slave address, but with the read bit instead of the write bit.
Then we read a byte from the slave (the acceleromter).
Lastly, we send a STOP bit.

Read Device ID?

I2C>[0xa6 Ox00[Oxa’/ r]
I2C START BIT

WRITE: OxA6 ACK

WRITE: Ox00 ACK

I2C START BIT

WRITE: OxA7 ACK

READ:

NACK

I2C STOP BIT
I2C>

Tuesday, February 26, 13

And here’s what it looks like, through the Bus Pirate.

Cool, OXE5 matches the device ID in the datasheet. We’re getting the right data from register
0 on the accelerometer.

Multiple-Register Read

NACK | | sTop

MULTIPLE-BYTE READ
MASTER STARTl | SLAVE ADDRESS + WRITE REGISTERADDRESS
ACK | DATA DATA]

y
[reg|ster addr+read rr]

Read X acceleration: [Oxa6 Ox32[0xa/ rr]

START‘l | SLAVEADDRESS +READ

Tuesday, February 26, 13
Here’s how to read consecutive registers. The datasheet says the chip will return the next

register in order, for every byte we read. So if we start at register 0x32 and read two bytes,
we’ll get the value for register 0x32 in the first byte we read, and the value for register 0x33
in the second byte we read. We could keep reading bytes and get the Y and Z axis data if we

wanted to...

Read X Acceleration?

I2C>[0xa6 Ox32[0xa7 rr]
I2C START BIT

WRITE: OxA6 ACK

WRITE: 0Ox32 ACK

I2C START BIT

WRITE: QxA7 ACK
READ:
READ: ACK(©x00

NACK

I2C STOP BIT
I2C>

Tuesday, February 26, 13

Back to the Bus Pirate.

Hmmm, the bytes are coming back as zeros. That’s the default register value. No matter how
| orient the accelerometer, | get zeros. Something’s wrong.

Y UNO MEASURE?

Measure Bit

A setting of 0 in the measure bit places the part into standby mode,
and a setting of 1 places the part into measurement mode. The
ADXL345 powers up in standby mode with minimum power
consumption.

Tuesday, February 26, 13

Flipping through the datasheet...

By default, the MEASURE bit is zero. When the MEASURE bit is zero, the chip does not
measure acceleration. Most chips do this —- they come up in low-power mode, and wait for a
command to turn on and do their work. This way, it’s easier for low-power devices (mobile
phones, video game controllers, whatever) to turn on and off quickly, and avoid burning any
more battery power than necessary.

Device Setup

Register 0x2D—POWER_CTL (Read/Write)
D7 | D6 | D5 D4 D3 D2 D1 | DO

0 0 Link | AUTO_SLEEP | Measure | Sleep | Wakeup

Tuesday, February 26, 13

So how do we turn on the MEASURE bit? The datasheet says that bit is in register 2d, so we’ll
need to write the correct value that register inside the accelerometer, via 12C. The MEASURE
bit is the third bit (starting from zero), and all the other bits can be zero (according to the
data sheet). So | need to write 0x08 to this register to make the chip measure acceleration.

Single-Register Write

SSSSSSSSSS

EEEEEE

SSSSSSSSSSSSSSSSSSSSSSS

Set MEASURE bit in POWER_CTL register:

uuuuuuuuuuuuuuuuuuuu

/I

i] register | cata }

out to be easier than *reading* registers!

[Oxab6 Ox2d Ox08]

Double-Check Your Writes

[I2C>[0xa6 Ox2d Ox08]
I12C START BIT
WRITE: OxA6 ACK

WRITE: @x2D ACK
WRITE: (@x08)ACK
I2C STOP BIT

I2C>[0Oxab Ox2d[Oxa7 r]
12C START BIT

WRITE: OxA6 ACK

WRITE: ©x2D ACK

12C START BIT

WRITE: OxA7 ACK

READ:

NACK

I2C STOP BIT
I2C>

Tuesday, February 26, 13
Trying this on the Bus Pirate...

First, | write the value to the POWER_CTL register. See where the 0x08 is sent to register
Ox2d?

Then, | read the value back, to verify that it works.
Yep, the data (0x08) is in register 0x2d.

If you’re doing something wrong, writing or reading registers, this is the easiest way to tell.

Read X Acceleration!

I2C>[0xa6 Ox32[0xa7 rr]
I2C START BIT

WRITE: OxA6 ACK

WRITE: 0Ox32 ACK

I2C START BIT

WRITE: QxA7 ACK
READ:
READ: ACK(©x00

NACK

I2C STOP BIT
I2C>

Tuesday, February 26, 13
Now, let’s try reading the X acceleration value again.

That’s better! Multiple reads, different values in different positions. The first read is from
register 0x32, and the second read is from the next register, 0x33. 0x32 holds the low

portion of the X acceleration value, and 0x33 holds the high portion of the X acceleration
value.

Known-Good Commands

Write Power Control register,

turn on MEASURE bit. [Oxab Ox2d Ox08]

Read device ID

(register 0X00) [Oxa6 OxO00[O0xa/ r]

Read X acceleration

(registers 0x32, 0x33) [0xa6 Ox32[0xa7 rr]

Tuesday, February 26, 13

So now we know how to initialize the accelerometer, to make it start measuring acceleration.
We know how to read the device ID (so we know it’s the ADXL345 accelerometer).
And we know how to read X acceleration values from the accelerometer.

Now, we can go to our microcontroller of choice and write some code, and we’ll know that
the 12C commands we’re sending are correct!

o Forth and Measure.

Tuesday, February 26, 13

Thanks for listening. If you have further questions or want to know some of the more gory
details of I12C that | couldn’t talk about in twenty minutes, feel free to ask now, or find me
after the “official” portion of tonight’s Dorkbot.

