
ShareBrained Technology

Robotron Autopsy
Learning Hardware via Software

Jared Boone
Open Source Bridge - June 18, 2013

Saturday, June 22, 13

My name is Jared Boone, and I design open-source hardware for a living. And I want to
introduce more people to hardware, so maybe, someday, all of you can hack on hardware,
too.

Chronulator

sharebrained.com/chronulator/

Kraig Sederquist

Saturday, June 22, 13

I’ve been involved to varying degrees in a few open-source hardware projects. There’s a
product I’ve sold for a few years now called the Chronulator. It’s a simple clock kit that is
great for learning how to solder.

I’ve also worked on other people’s projects -- mostly related to wireless security.

Ubertooth

greatscottgadgets.com/ubertoothone/

Saturday, June 22, 13

I helped with the hardware design and coding on a Bluetooth testing tool called Ubertooth.

HackRF

greatscottgadgets.com/hackrf/ GitHub: fd0

Saturday, June 22, 13

I contributed to the hardware architecture and code for a software-defined radio called
HackRF.

Daisho

greatscottgadgets.com/daisho/

GitHub: marshallh

Saturday, June 22, 13

And I’m doing a bunch of hardware design on a new project called Daisho, which is another
security-focused tool for evaluating high speed communication protocols like USB Super
Speed, HDMI, and Gigabit Ethernet.

Mike Ossmann

GreatScottGadgets.com

Saturday, June 22, 13

Those three security-related projects are the brainchildren of Mike Ossmann, who will be
speaking at this conference tomorrow at 1:30 about the HackRF radio and how you too can
play with radio technology, even if you have no hardware experience.

I, on the other hand, will give you a bit of hardware experience by building on your software
experience.

arcadenostalgia.katorlegaz.com

Saturday, June 22, 13

And we’ll do it by taking apart this thing. This is Robotron: 2084, an arcade game released in
1982. This is back when most video games were the kind you dropped quarters in to. The
game is built into a giant wood cabinet with excellent graphics plastered all over the exterior.
It has a big color cathode ray tube display, two joysticks, and an integrated speaker for sound
effects.

Saturday, June 22, 13

The graphics are pretty clunky by modern standards. But Robotron is also proof that great
gameplay can transcend hardware limitations.

Saturday, June 22, 13

The backstory on the game is that the Robotrons are robots that evolved to the point they see
humans as inefficient, and naturally conclude they must be destroyed. Your job, as the
mutant savior, is to destroy the robots and save the last human family from destruction.

Saturday, June 22, 13

In this video, Jason demonstrates how that’s done. This is the machine over at Ground
Kontrol, on NW 5th and Couch, in downtown Portland ...if you should ever feel the need to
kill some Robotrons yourself.

Saturday, June 22, 13

In this video, Jason demonstrates how that’s done. This is the machine over at Ground
Kontrol, on NW 5th and Couch, in downtown Portland ...if you should ever feel the need to
kill some Robotrons yourself.

Wikipedia: AcidHelmNun

Eugene Jarvis

Saturday, June 22, 13

Robotron was designed for Williams Electronics by a game consulting company called Vid
Kidz, consisting of Eugene Jarvis and Larry DeMar. Here is Eugene Jarvis in 2006.

robotron-2084.co.uk
Saturday, June 22, 13

Their handiwork consists of four giant circuit boards inside the game cabinet. Here is the
largest one. It connects to the video monitor, and a couple of other boards. Let’s look at the
labeling on some of the chips and see if we can’t Google datasheets to learn more about
them.

robotron-2084.co.uk

MC6809E
24 x MK4116

Saturday, June 22, 13

The big chip on the left is a Motorola MC6809E “8-bit Microprocessing Unit”. The 24 chips in
the upper right are MK4116 “16 kilobit dynamic RAM” chips. So it sounds like this board
contains an 8-bit computer with 48K bytes of memory.

Wikipedia: Bilby

Saturday, June 22, 13

We could be describing this classic computer, the Radio Shack Color Computer. It’s also built
on the Motorola 6809 processor, and came with roughly the same amount of memory.
Robotron is built very much like the computers of the day, but has some special hardware
that makes it much better for implementing video games.

robotron-2084.co.uk

Saturday, June 22, 13

Here’s another, smaller board that attaches to the large board via the gray ribbon cable in the
upper right corner. It attaches to another small board via the top-left connector, and to the
coin acceptors via the bottom-left connector.

12 x “ROM”

MC6821

robotron-2084.co.uk

Saturday, June 22, 13

Twelve of these chips have labels on them that say “ROM”. They’re uniquely numbered from
one to twelve. This must be the read-only memory where the program code for the game is
stored.
There’s an MC6821 Peripheral Interface Adapter next to the connectors on the left.

robotron-2084.co.uk

Saturday, June 22, 13

Here’s the third board, which connects to the prior board by a cable. It also attaches to the
audio speaker.

MC6802
“Video Sound

ROM”

MC6821

MC6810

robotron-2084.co.uk

Saturday, June 22, 13

There are three interesting chips here. The MC6802 is another “8-bit Microprocessor”. The
MC6810 is a 128 byte RAM chip. And there’s a ROM chip for code. There’s another MC6821
Peripheral Interface Adapter. So it seems like we have another 8-bit computer on this board.
And it may be responsible for sound effects, because it has the speaker connection and has a
“Video Sound ROM” chip on it.

robotron-2084.co.uk

Saturday, June 22, 13

Here’s the last board, which connects to the big board via another gray ribbon cable. There
are two connectors along the top edge that attach to the joysticks. If we look under the
purple label...

MC6821

robotron-2084.co.uk

Saturday, June 22, 13

...we find yet another MC6821 Peripheral Interface Adapter. So this chip must interface the
joysticks and buttons to the system.

Proc RAM

ROM

PIA

Coin Slots Speaker

ProcRAM

ROMPIA

PIA JoysticksVideo

CPU Interface / “Widget”

ROM Sound

Saturday, June 22, 13

Here’s a diagram of what we’ve learned so far about the four boards and how they connect. It
seems like we have two distinct computers in this machine. One does the video stuff and
checks the joysticks and coin slots. The other computer generates sound effects.

CPU Board (page 1)

Saturday, June 22, 13

This is one of five pages of schematics for the Robotron game. Robotron was made back
when circuit boards and chips were large and easy to repair using common tools, and
electronics weren’t quite as reliable as they are today. So it made sense for the manufacturer
to publish a repair manual that included complete schematics.

CPU Board (page 1)

Saturday, June 22, 13

Here’s the MC6809E microprocessor we found earlier by looking at the board photos.

Processor Memory

10: #22
11: #33
12: move $10, $11
13: add #5, $11

program counter = 12
instruction = ?

address bus

data bus

write

Program Execution

Saturday, June 22, 13

The MC6809E is the 1982 equivalent of an ARM or Intel or AMD processor. It runs a program,
step-by-step, from machine language instructions located in memory. The program instructs
the processor to modify the program’s state by reading and writing to variables stored in
memory.

Tracing the Address Bus

Saturday, June 22, 13

If we look at the 6809 processor, we can see the chip has 16 “A” signals, eight “D” signals,
and a “Read/Write” signal. These are the signals that interface to the memory and
peripherals.

Tracing the Address Bus

Saturday, June 22, 13

If we follow the address signals out and see where they connect, we’ll find all of the memory
and peripherals that are reachable from the microprocessor.

Tracing the Address Bus

Saturday, June 22, 13

The address bus goes to the board with the ROM chips on it. It would make sense if the
game’s program code was in the ROM.

Tracing the Address Bus

Saturday, June 22, 13

Some of the address bus bits also go to the joystick board.

CPU Board (page 2)

Saturday, June 22, 13

The address bus also goes to the CPU Board schematic, page 2, where it connects to the 48K
byte of memory chips.

Proc

Address Bus

RAM

ROM Board
Widget Board

Saturday, June 22, 13

Here’s a diagram of what we know about the CPU board so far. The processor and RAM are
both connected to the address bus, and the address bus goes to the ROM board.

Tracing the Address Bus

Saturday, June 22, 13

Back to the schematic, let’s see where the processor data bus goes. The data bus also goes to
the ROM board, the Widget board, and to page two of the CPU board schematic.

CPU Board (page 2)

Saturday, June 22, 13

On page two of the CPU board schematic, the data bus goes to the 48K memory bank.

Proc

Address Bus

Data Bus

RAM

ROM Board
Widget Board

ROM Board
Widget Board

Saturday, June 22, 13

Here’s the data bus, added to the CPU board diagram.

Tracing the Address Bus

Saturday, June 22, 13

Let’s look around the schematic for what else the address and data buses connect to. Here’s
a RAM chip that’s not part of the 48K. It’s a 1K x 4 RAM...

Saturday, June 22, 13

Here’s the first page of the chip’s datasheet.

bit ram[1024][4]

process chip_hm6514:
if write:
ram[address] = data

else:
data = ram[address]

> write = 1

> address = 22, data = 13

> write = 0

> address = 22, print data[22]
13

Saturday, June 22, 13

And some pseudocode for how the chip behaves. An array is declared that represents the 1K
x 4 bits of storage in the chip. A process in the chip outputs data found at an address in the
array, unless the write signal is true, in which case, the chip writes data into its storage at the
specified address.

Tracing the Address Bus

Saturday, June 22, 13

There’s a battery attached to this chip. If the machine loses power, the data in this memory
chip will be preserved. This must be where the high scores and configuration are stored --
for when the arcade turns off the power to the machine every night. Your awesome high
score will still be there in the morning!

Watchdog

Saturday, June 22, 13

Here’s another chunk of circuitry connected to the processor address and data buses. It has a
telling bit of text in the middle of it -- “Watchdog Disable”. This must be the hardware
watchdog circuit for the game. A hardware watchdog is a circuit that will reset the system if
something goes wrong.

Watchdog

process watchdog_timer:
wait for watchdog_timer_clock.event
if watchdog_timer_count == timeout_count:
processor.reset = 1

else:
processor.reset = 0
watchdog_timer_count += 1

process watchdog_reset:
if memory_address == watchdog_address:
if memory_data == watchdog_reset_value:
if write:
watchdog_timer_count = 0

Application code:
... do fun stuff ...
memory[watchdog_address] = watchdog_reset_value
... do more fun stuff ...

Saturday, June 22, 13

A common way to do this is by writing your application code so that it periodically resets a
timer. The code causes the timer to reset by writing a specific piece of data to a specific
memory address. If this isn’t done by the time the timer reaches the timeout value, the
watchdog circuit resets the processor on the assumption that the program has crashed
somehow. (This is long before operating systems and exception handling and all that fancy
stuff.)

Watchdog

Saturday, June 22, 13

How is this achieved in the Robotron hardware? On the right side is some decoding logic that
checks the address and data buses for the specific watchdog values. I’ll work through this
logic in a moment. But first, a quick detour into how boolean logic operations are depicted on
a schematic...

ANDANDAND
A B OUT
0 0 0
0 1 0
1 0 0
1 1 1

Logic Symbols - AND

A

B
OUT

OUT = A and B

Wikipedia: jjbeard

Saturday, June 22, 13

Here’s a two-input AND symbol. Flat on the input sides and rounded on the output side.

OROROR
A B OUT
0 0 0
0 1 1
1 0 1
1 1 1

Logic Symbols - OR

A

B
OUT

Wikipedia: jjbeard

OUT = A or B

Saturday, June 22, 13

...a two-input OR. Rounded and pointy on both ends.

XORXORXOR
A B OUT
0 0 0
0 1 1
1 0 1
1 1 0

Logic Symbols - XOR

A

B
OUT

Wikipedia: jjbeard

OUT = (A != B)

Saturday, June 22, 13

...a two-input XOR, like an OR, but with an extra line across the input of the symbol.

An XOR is true only when the inputs are *not* the same.

NOTNOT
A OUT
0 1
1 0

Logic Symbols - NOT

A OUT

Wikipedia: jjbeard

OUT = not A

Saturday, June 22, 13

...this is a NOT symbol, also referred to as an inverter. Notice the circle on the output...

NANDNANDNAND
A B OUT
0 0 1
0 1 1
1 0 1
1 1 0

Logic Symbols - NAND

A

B
OUT

Wikipedia: jjbeard

OUT = not (A and B)

Saturday, June 22, 13

...there’s a circle on the output of this AND symbol, which *inverts* the AND output and
makes it a “not-AND” or NAND function.

NORNORNOR
A B OUT
0 0 1
0 1 0
1 0 0
1 1 0

Logic Symbols - NOR

A

B
OUT

Wikipedia: jjbeard

OUT = not (A or B)

Saturday, June 22, 13

The same thing applies here... An OR symbol with a circle on the output becomes a “not-OR”
or NOR function.

Watchdog

Saturday, June 22, 13

Back to the watchdog area of the schematic. Here are two NOR gates.

Watchdog

 x or y

 x or y

Saturday, June 22, 13

The shape of this symbol represents an OR function...

Watchdog

not (x or y)

not (x or y)

Saturday, June 22, 13

..but the circle on the output means that the output is inverted, making it a NOR function.

Watchdog

not (D[1] or D[2])

not (D[6] or D[7])

Saturday, June 22, 13

In this case, they’re EACH taking two bits from the data bus as input.

Watchdog

not x

Saturday, June 22, 13

And at the bottom, we have a NOT function, which just inverts the boolean value that goes in
to it.

Watchdog

not (not (A[8:15] == 0xC8))

Saturday, June 22, 13

In this case, that value comes from somewhere else on the schematic, where address signals
8 through 15 are compared against C8 in hexadecimal.

Watchdog

 A[8:15] == 0xC8

Saturday, June 22, 13

Two wrongs make a right (if you invert a value twice, you get the original value), so the two
NOTs cancel out, and we’re left with a simple comparison.

Watchdog

 x and y

Saturday, June 22, 13

Here’s an AND function. The output is a one only if both inputs are ones.

Watchdog

 x and A[1]

Saturday, June 22, 13

One of the inputs is address bit 1.

Watchdog

(A[8:15] == 0xC8) and A[1]

Saturday, June 22, 13

The other input comes from the output of the NOT function from a few slides ago.

Watchdog

not (
x1 and
x2 and
x3 and
x4 and
x5 and
x6 and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)

Saturday, June 22, 13

All of these functions flow into a giant NAND function -- an AND function with 13 inputs and
an inverted output.

Watchdog

not (
x1 and
x2 and
x3 and
x4 and
x5 and
x6 and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)

not (D[1] or D[2])

not (D[6] or D[7])

Saturday, June 22, 13

The two NOR functions go into the NAND... ***next***

Watchdog

not (
x1 and
x2 and
x3 and
x4 and
x5 and
x6 and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)

not (D[1] or D[2])

not (D[6] or D[7])

Saturday, June 22, 13

The two NOR functions go into the NAND... ***next***

Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
x6 and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)

not (D[6] or D[7])

Saturday, June 22, 13

Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
x6 and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)

not (D[6] or D[7])

Saturday, June 22, 13

Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
(not (D[6] or D[7])) and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)

Saturday, June 22, 13

*** next ***

Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
(not (D[6] or D[7])) and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

) (A[8:15] == 0xC8) and A[1]

Saturday, June 22, 13

The AND function goes into the NAND... ***next***

Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
(not (D[6] or D[7])) and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)
(A[8:15] == 0xC8) and A[1]

Saturday, June 22, 13

The AND function goes into the NAND... ***next***

Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
(not (D[6] or D[7])) and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
((A[8:15] == 0xC8) and A[1])

)

Saturday, June 22, 13

next

Watchdog

not (
D[0] and
(not (D[1] or D[2])) and
D[3] and
D[4] and
D[5] and
(not (D[6] or D[7])) and
A[2] and
A[3] and
A[4] and
A[5] and
A[6] and
A[7] and
((A[8:15] == 0xC8) and A[1])

)

Saturday, June 22, 13

...and lastly, a bunch of direct connections to various other data and address bits.

Watchdog

not (x or x)

Saturday, June 22, 13

The output of that big ball of logic goes into a NOR, but with both inputs tied together --
having the same value. When the inputs are zero, the output is one. And when the inputs are
one, the output is 0. That sounds like an inverter!

Watchdog

not x

Saturday, June 22, 13

The hardware designer did this because logic functions usually come in multiples per chip.
For a NOR function, you usually get four functions in a chip. The designer needed one more
inverter, but only had an extra NOR. So they wired the extra NOR this way to make it act like
an inverter. In doing so, the designer AVOIDED adding another inverter chip to the design.

Watchdog

not (not (
D[0] and
(not (D[1] or D[2])) and
D[3] and
D[4] and
D[5] and
(not (D[6] or D[7])) and
A[2] and
A[3] and
A[4] and
A[5] and
A[6] and
A[7] and
((A[8:15] == 0xC8) and A[1])

))

Saturday, June 22, 13

So with the additional NOT applied to the equation, we have this as our watchdog address
and data decoder. Two NOTs cancel out, and we’re left with this...

Watchdog

D[0] and
(not (D[1] or D[2])) and
D[3] and
D[4] and
D[5] and
(not (D[6] or D[7])) and
A[2] and
A[3] and
A[4] and
A[5] and
A[6] and
A[7] and
((A[8:15] == 0xC8) and A[1])

Saturday, June 22, 13

This is the equation which determines if the processor is trying to reset the watchdog timer.
If this chunk of logic detects that the processor is trying to write a specific address with a
specific data value, this equation will become true and will reset the watchdog timer,
preventing the machine from being reset.

Watchdog

D[0] and
(not (D[1] or D[2])) and
D[3] and
D[4] and
D[5] and
(not (D[6] or D[7])) and
A[2] and
A[3] and
A[4] and
A[5] and
A[6] and
A[7] and
((A[8:15] == 0xC8) and A[1])

D[0]==1
(not (D[1] or D[2]))==1
D[3]==1
D[4]==1
D[5]==1
(not (D[6] or D[7]))==1
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
((A[8:15] == 0xC8) and
A[1])==1

Saturday, June 22, 13

So let’s substitute some values to figure out what will make this equation be 1 (true). At the
outermost level, all the values are ANDed together. To make the equation equal 1 (true), D[0]
needs to be 1 and D[3] needs to be 1, and D[4] needs to be 1, and so on...

Watchdog

D[0]==1
(not (D[1] or D[2]))==1
D[3]==1
D[4]==1
D[5]==1
(not (D[6] or D[7]))==1
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
(A[8:15] == 0xC8)==1
A[1]==1

Saturday, June 22, 13

The test for A[8 through 15] equals C8 *and* A[1] equals 1 can be separated.

Watchdog

D[0]==1
(D[1] or D[2])==0
D[3]==1
D[4]==1
D[5]==1
(D[6] or D[7])==0
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
(A[8:15] == 0xC8)==1
A[1]==1

Saturday, June 22, 13

We can flip the truth on the two NOR equations... Removing the NOT and making the result
equal 0 instead of 1.

Watchdog

A =
A[8:15] = 0xC8,
A[7] = 1,
A[6] = 1,
A[5] = 1,
A[4] = 1,
A[3] = 1,
A[2] = 1,
A[1] = 1,
A[0] = ?

A = 0xC8FE or 0xC8FF!

D[0]==1
(D[1] or D[2])==0
D[3]==1
D[4]==1
D[5]==1
(D[6] or D[7])==0
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
(A[8:15] == 0xC8)==1
A[1]==1

Saturday, June 22, 13

From this, we can stick together the possible combinations and determine what the watchdog
address is. Because A[0] isn’t checked by the watchdog logic, it could be either a zero or a
one, so the watchdog logic will respond to two different addresses, C8FE or C8FF.

Watchdog

D =
(D[6] or D[7]) = 0,

D[5] = 1,
D[4] = 1,
D[3] = 1,
(D[1] or D[2]) = 0,

D[0] = 1

D[0]==1
(D[1] or D[2])==0
D[3]==1
D[4]==1
D[5]==1
(D[6] or D[7])==0
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
(A[8:15] == 0xC8)==1
A[1]==1

Saturday, June 22, 13

As for the data, we can do the same thing. For D[6] OR D[7] to be zero, both D[6] and D[7]
must be zero. The same goes for D[1] and D[2].

Watchdog

D[0]==1
(D[1] or D[2])==0
D[3]==1
D[4]==1
D[5]==1
(D[6] or D[7])==0
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
(A[8:15] == 0xC8)==1
A[1]==1

D =
D[7] = 0,
D[6] = 0,
D[5] = 1,
D[4] = 1,
D[3] = 1,
D[2] = 0,
D[1] = 0,
D[0] = 1

D = 0x39!

Saturday, June 22, 13

So the watchdog reset data value is 39 hex.

Proc

Address Bus

Data Bus

RAM

ROM Board
Widget Board

ROM Board
Widget Board

Watchdog

Saturday, June 22, 13

Here’s the system architecture, updated with the watchdog timer. You can see that it listens
to the address and data buses, and controls the RESET signal going to the processor.

Video - Signals Overview

Red

Green

Blue

H-Sync

V-Sync
time

Saturday, June 22, 13

Next, the video system, and a quick refresher on how analog video signals work. ***next***
Pixels are scanned out to a video display one pixel at a time, over three color channels. The
horizontal sync signal tells the video display when a row of pixels has ended, and to move
back to the left side of the screen -- much like a carriage return and line feed in a text
console. The vertical sync tells the video display when to start a new screen full of pixels. On
most displays, this happens 60 times a second.

Video - Signals Overview

Red

Green

Blue

H-Sync

V-Sync
time

Saturday, June 22, 13

Next, the video system, and a quick refresher on how analog video signals work. ***next***
Pixels are scanned out to a video display one pixel at a time, over three color channels. The
horizontal sync signal tells the video display when a row of pixels has ended, and to move
back to the left side of the screen -- much like a carriage return and line feed in a text
console. The vertical sync tells the video display when to start a new screen full of pixels. On
most displays, this happens 60 times a second.

Video - Output

Saturday, June 22, 13

Here’s the red, green, blue, horizontal sync, and vertical sync signals on the CPU board. This
must be the video output. Let’s trace back from these signals to see how the video hardware
works.

Video - RGB Channels

Saturday, June 22, 13

The red, green, and blue signals carry the pixel colors to the monitor as a video frame is
scanned out for display, 60 times a second. The signals come through three transistors which
buffer the output of three resistor ladders, one for each color channel.

Resistor ladders are a simple form of digital-to-analog converter. We can see that there are
three bits (three resistors) allocated to red, three to green, but only two to blue. In total, we
have eight bits of color depth. This is a big step back from the 24-bit color displays we enjoy
on modern computers.

Video - Pixel Color Look-Up Table

Saturday, June 22, 13

Continuing to work back from the pixel resistor ladders, we find two memory chips -- very
small memory chips.

Saturday, June 22, 13

...a measly 64 bits, in fact, organized as an array of 16 x 4 bits.

Video - Pixel Color Look-Up Table

Saturday, June 22, 13

Two of these RAM chips are wired up into a 16 x 4 x 2 arrangement, for an effective array
size of 16 x 8 bits.

Video - Pixel Color Look-Up Table

Saturday, June 22, 13

The eight data outputs of these memory chips are wired to the RGB color channels.

Video - Pixel Color Look-Up Table

Saturday, June 22, 13

And the eight data inputs are connected to the processor’s data bus.

Video - Pixel Color Look-Up Table

Saturday, June 22, 13

The address input (the index into the memory array) comes from the memory bank on the
other page of the CPU board schematic.

bit lut[16][8]

process pixel_lut:
if write:
lut[index] = processor_data

else:
red = lut[index][2:0]
green = lut[index][5:3]
blue = lut[index][7:6]

Video - Pixel Color Look-Up Table

Saturday, June 22, 13

At this point, it’s safe to say that the display image lives in a buffer in the 48K memory bank,
and that these two little memory chips are providing a look-up table, turning four-bit pixel
values into eight-bit RGB values. In other words, this is a color table or color palette memory.
The processor can modify the color palette to change the RGB color that a pixel index
corresponds to. This is what gives Robotron its crazy palette animation effects.

Saturday, June 22, 13

Modern computers, without palette lookup tables, would have to redraw virtually the entire
screen to achieve these epilepsy-inducing color effects. But with the Robotron’s palette-
based graphics system, the processor just rewrites only 16 palette RAM values for each video
frame, and animation is achieved!

Saturday, June 22, 13

Modern computers, without palette lookup tables, would have to redraw virtually the entire
screen to achieve these epilepsy-inducing color effects. But with the Robotron’s palette-
based graphics system, the processor just rewrites only 16 palette RAM values for each video
frame, and animation is achieved!

Video - Pixel Color Look-Up Table

Saturday, June 22, 13

How does pixel data get from the 48K memory bank to the color palette memory? It comes in
from the other schematic sheet, four bits at a time, as signals “serial0” through “serial3”.

Video - Memory:Pixel Serializer

Saturday, June 22, 13

Those four bits come from this circuit, which is made up of four 74166 chips. Each chip is an
eight-bit shift register. These shift registers take bytes and turn them into a stream of bits.

Video - Memory:Pixel Serializer

bit value[8]

process shift_instance:
wait for clock.event
if load:
value = input

else:
value = value >> 1

output = value & 1

Saturday, June 22, 13

In pseudo-code, this is how an eight-bit shift register would look. The shift register only
does work when a clock event occurs. If the load variable is true, the shift register value
loaded from the input byte. If the load variable is false, the shift register shifts the register
one bit. The output is always the value of the shift register’s least-significant bit.

Video - Memory:Pixel Serializer

Saturday, June 22, 13

How are these shift registers connected? The input to the shift registers comes from the
memory bank, 24 bits at a time.

Video - Memory:Pixel Serializer

Saturday, June 22, 13

Those 24 bits are then doled out from the shift registers, four bits at a time, into the color
palette memory.

Video - Memory:Pixel Serializer

Saturday, June 22, 13

The clock signal going to each shift register controls how fast the bits are shifted out of the
shift registers. Elsewhere in the schematic, the clock is shown to be 6 MHz.

Memory

Shift

Shift

Shift

Shift

24

6

6

6

6

4

1

1

1

1

Pixel
Palette Index

1 MHz 6 MHz

Saturday, June 22, 13

So to sum up this bit of the circuit: The pixel data is read from the memory 24 bits at a time,
at a rate of 1 MHz, and loaded into the shift registers. The shift registers serialize this data to
produce four bits at a time, or one pixel at a time, at a rate of 6 MHz. But why this
complicated arrangement with shift registers? Why couldn’t the hardware read two pixels
(one byte) directly from memory at a rate of 3 MHz and do away with the shift registers?

Memory

Saturday, June 22, 13

To answer that, have a look at the datasheet for the RAM chips that make up the memory
bank where the video frame buffer lives.

Memory

Saturday, June 22, 13

You’ll see that this chip takes between 150 ns and 200 ns to access data, depending on
whether you use the faster or slower version of the chip. Just like DDR3 memory speeds in
modern computers, fast memory chips in 1982 commanded a premium price. In fact, the
designers specified a much older model of this chip that took 450 ns to access data!

> time = 450e-9 # 450 ns

> frequency = 1.0 / time

> print(frequency)
2222222.2222222

Saturday, June 22, 13

So how many accesses per second can a 450 ns memory chip perform? 2.2 million.
Remember how we needed to read 3 million bytes a second from memory to have a video
pixel output rate of 6 million pixels a second? 450 ns memory chips clearly aren’t fast
enough.

Proc RAM

ROM Board
Widget Board

ROM Board
Widget Board

Watchdog Video

Address Bus

Data Bus

Video

Saturday, June 22, 13

Add to that the problem that the memory is being shared with the processor. The processor
has a 1 MHz clock cycle, and needs to access the memory up to 1 million times a second. So
we need a combined memory bandwidth of 4 million bytes a second for both the video and
processor.

Memory Shift

Shift

Shift

Shift

24

6

6

6

6

4

1

1

1

1

Pixel
Palette Index

1 MHz 6 MHz

Memory

Memory

8

8

8

Saturday, June 22, 13

This is why the hardware designers made the memory bank three bytes wide instead of one
byte wide, and added the shift registers for the pixel data. If memory accesses take 450 ns,
but you’re reading three bytes each time instead of just one byte, your aggregate bandwidth
is 6.7 million bytes per second -- enough to satisfy the combined 4 million bytes per second
for the video hardware and the processor.

Video - Time for a Cocktail

Stephan Suys: http://www.arcade.chezsuys.com/RoboCocktail.html

Saturday, June 22, 13

While we’re on the subject of video hardware, I should tell you about the cocktail cabinet
versions of Robotron. These are cabinets built like tables. Two players sit on opposite ends of
the machine, with the screen in between (or a baby, in this case), and play two-player games
against each other.

http://www.arcade.chezsuys.com/RoboCocktail.html
http://www.arcade.chezsuys.com/RoboCocktail.html

Video - Time for a Cocktail

Saturday, June 22, 13

I suppose it goes without saying that the image on the screen needs to flip upside-down for
player 2 to be able to play the game.

Video - Time for a Cocktail

Saturday, June 22, 13

I suppose it goes without saying that the image on the screen needs to flip upside-down for
player 2 to be able to play the game.

Saturday, June 22, 13

I conveniently ignored the fact that there’s a second set of pixel shift registers next to the
ones we just discussed. There’s a subtle difference, though...

Saturday, June 22, 13

The bits from memory are connected to the bottom shift registers in a different order from
the top, reversing the order of pairs of pixels. Instead of the pixel order being 1-2, 3-4, 5-6,
it’s 2-1, 4-3, 6-5. Very interesting...

Video - Screen Control

Saturday, June 22, 13

The two sets of pixel shift registers flow into a 2:1 selector, which switches between the
output of the top shift registers and the bottom shift registers, based on a mysterious signal
called “SCREEN CONTROL”. Let’s look around for other places on the schematics where this
SCREEN CONTROL signal appears.

Video - Screen Control

Saturday, June 22, 13

SCREEN CONTROL shows up on the first page of the CPU board schematic, where it goes off
to the ROM board. But it also goes into two chips.

Video - Screen Control

Saturday, June 22, 13

Both are the same kind of a chip, the 7641.

Saturday, June 22, 13

The 7641 is a 512 byte programmable read-only memory (or PROM).

Video - Screen Control

Saturday, June 22, 13

The PROM chip on the left is connected between the processor address bus and a “pseudo”
address bus. The pseudo address bus goes to the 48K memory bank, where the video frame
buffer and game runtime state lives.

The PROM chip on the right is connected between the 48K memory bank and the video pixel
counter, which keeps track of which video pixel is being sent to the display at any instant in
time.

Video - Screen Control

Saturday, June 22, 13

The SCREEN CONTROL signal comes in to one of the address lines of each PROM chip. So
what is it doing?

The two chips work in concert to change the order pixels are written to memory, and the
order they’re read for memory when being scanned onto the display. By changing the SCREEN
CONTROL signal, the image on the screen will reverse without any additional effort from the
processor.

Video - Screen Control

Saturday, June 22, 13

Why do this? Remember, this processor runs at 1MHz, and executes maybe 300,000
instructions per second (modern processors perform billions of instructions per second). The
processor doesn’t have time to do the extra math to reverse coordinates when it’s drawing.
And there’s no fancy, modern GPU chip to do it, either. The designers solved the problem
with a simple bit of hardware that alters the way memory is addressed, and it’s transparent to
the processor.

Sound Board

Saturday, June 22, 13

I’ve touched on most of the interesting stuff on the ROM board, so let’s have a quick look at
the sound board. Recall that we found all the chips required to make a full computer -- an 8-
bit processor, a RAM chip, and some ROM for program code.

Here is the connection to the ROM board. The processor on the CPU board controls the sound
board through this interface.

Sound Board

Saturday, June 22, 13

Here’s the MC6802 microprocessor.

Sound Board

Saturday, June 22, 13

The 128 byte memory.

Sound Board

Saturday, June 22, 13

The ROM chip.

Sound Board

Saturday, June 22, 13

...and yet another MC6821 Peripheral Interface Adapter.

Sound Board

Saturday, June 22, 13

Connected to the Peripheral Interface Adapter is an MC1408 chip, which is then connected to
a speaker and volume control.

Saturday, June 22, 13

The MC1408 is an eight-bit digital-to-analog converter. This must be the audio output, and
the computer on the sound board must be an eight-bit digital audio synthesizer!

Graphics - Special Chip 1

Saturday, June 22, 13

This is the Williams Special Chip 1 -- worthy of a talk all by itself, so I’m going to skip it this
time. This chip is the 1982 equivalent of a GPU. It was designed to move pixels around in
memory without the involvement of the main processor. Since the 6809E processor can only
execute a few hundred thousand instructions per second (it runs at only 1 MHz), it needs
help moving pixels fast enough to implement the game.

Graphics - Special Chip 1

Saturday, June 22, 13

A pair of these chips are on the ROM board of each Robotron machine, and are commanded
by the processor to do the bulk of the graphics and animation, including copying bitmap font
images from ROM to video memory.

ROM Board

Saturday, June 22, 13

I’m going to skip the rest of the ROM board, since there’s not too much more interesting on
it, just a ROM bank, and the interface to the coin acceptors and sound board.

Interface (Widget) Board

Saturday, June 22, 13

I’m also going to skip the interface board. AGain, not much of note, just an interface to the
joystick and player buttons.

What’s the Point?

Saturday, June 22, 13

So besides having fodder for this talk, why did I reverse-engineer Robotron? I wanted to
recreate the game. But not as software...

Software Isn’t Quite Like Hardware

Saturday, June 22, 13

...that’s already been done by software like MAME, the multi-arcade machine emulator. But
it’s not a very literal simulation. It doesn’t try too hard to act like the actual hardware.

FPGAs - Stem Cells for Silicon

FPGA

Saturday, June 22, 13

I wanted to recreate the game using the schematics, and a real 6809E processor. To do this, I
used a “field programmable gate array” or FPGA chip, which I like to describe as “stem cells
for silicon”. An FPGA is like any other chip, except it’s not wired to do anything in particular.
Instead, you load your own wiring into a matrix on the chip that connects the chip’s logic the
way you want it. An FPGA could act like a microprocessor, a video card, a BitCoin miner, a
music synthesizer, a high-speed data decryptor, a RADAR data processing system... or
simulate video game hardware...

Logic == Logic

Saturday, June 22, 13

An FPGA isn’t executing code, it’s acting exactly like the chips on the schematic. And
therefore, it has the potential to be a more accurate recreation of the game.

Cop-Out, or Retro Reverence?

Saturday, June 22, 13

I did cop out on one thing, though. I didn’t want to try and recreate the MC6809E
microprocessor in the FPGA. It was too much of a challenge for my FPGA skills. So I created
an interface board so I could plug a real 6809 into my FPGA board and avoid that work. In
retrospect, I kinda like that there’s still an original chip in my project. It makes it even *more*
real...

Hardware Description Language

process(clock)
begin
 if rising_edge(clock) then
 if reset_request = '1' then
 reset_counter <= (others => '0');
 reset <= '1';
 else
 if reset_counter < 100 then
 reset_counter <= reset_counter + 1;
 else
 reset <= '0';
 end if;
 end if;
 end if;
end process;

Saturday, June 22, 13

So how do you describe to an FPGA how you want it to act? With a hardware description
language or HDL. There are two major languages -- VHDL and Verilog. It looks a lot like
software, but it’s not. In HDL, the code you write turns into actual bits of hardware --
circuitry that performs exactly the tasks you describe. And all these circuits operate
simultaneously, which means FPGAs are great for doing massively parallel processing tasks.

Implementation from Schematic

Saturday, June 22, 13

As I studied the schematic, I implemented the circuitry I found by describing it in HDL code.

One of Many Misunderstandings...

Saturday, June 22, 13

There were a few mis-steps along the way. The most visible were when I was trying to
understand how the video hardware worked.

But Eventually...

Saturday, June 22, 13

But eventually, I figured it out and got a playable machine!

All my HDL is up on GitHub, if you’re at all interested in how it all works...

Links

seanriddle.com/willy.html

github.com/sharebrained/robotron-fpga

churchofrobotron.com

Incredible reverse-engineering of Williams arcade machines

My FPGA-based Robotron hardware implementation

All Must Be Tested!!!

Saturday, June 22, 13

http://seanriddle.com/willy.html
http://seanriddle.com/willy.html
http://seanriddle.com/willy.html
http://seanriddle.com/willy.html
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
https://github.com/sharebrained/robotron-fpga
http://churchofrobotron.com
http://churchofrobotron.com
http://churchofrobotron.com
http://churchofrobotron.com
http://churchofrobotron.com
http://churchofrobotron.com

