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My name is Jared Boone, and I design open-source hardware for a living. And I want to 
introduce more people to hardware, so maybe, someday, all of you can hack on hardware, 
too.



Chronulator

sharebrained.com/chronulator/

Kraig Sederquist

Saturday, June 22, 13

I’ve been involved to varying degrees in a few open-source hardware projects. There’s a 
product I’ve sold for a few years now called the Chronulator. It’s a simple clock kit that is 
great for learning how to solder.

I’ve also worked on other people’s projects -- mostly related to wireless security.



Ubertooth

greatscottgadgets.com/ubertoothone/
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I helped with the hardware design and coding on a Bluetooth testing tool called Ubertooth.



HackRF

greatscottgadgets.com/hackrf/ GitHub: fd0
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I contributed to the hardware architecture and code for a software-defined radio called 
HackRF.



Daisho

greatscottgadgets.com/daisho/

GitHub: marshallh
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And I’m doing a bunch of hardware design on a new project called Daisho, which is another 
security-focused tool for evaluating high speed communication protocols like USB Super 
Speed, HDMI, and Gigabit Ethernet.



Mike Ossmann

GreatScottGadgets.com
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Those three security-related projects are the brainchildren of Mike Ossmann, who will be 
speaking at this conference tomorrow at 1:30 about the HackRF radio and how you too can 
play with radio technology, even if you have no hardware experience.

I, on the other hand, will give you a bit of hardware experience by building on your software 
experience.



arcadenostalgia.katorlegaz.com
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And we’ll do it by taking apart this thing. This is Robotron: 2084, an arcade game released in 
1982. This is back when most video games were the kind you dropped quarters in to. The 
game is built into a giant wood cabinet with excellent graphics plastered all over the exterior. 
It has a big color cathode ray tube display, two joysticks, and an integrated speaker for sound 
effects.
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The graphics are pretty clunky by modern standards. But Robotron is also proof that great 
gameplay can transcend hardware limitations.
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The backstory on the game is that the Robotrons are robots that evolved to the point they see 
humans as inefficient, and naturally conclude they must be destroyed. Your job, as the 
mutant savior, is to destroy the robots and save the last human family from destruction.
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In this video, Jason demonstrates how that’s done. This is the machine over at Ground 
Kontrol, on NW 5th and Couch, in downtown Portland ...if you should ever feel the need to 
kill some Robotrons yourself.
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In this video, Jason demonstrates how that’s done. This is the machine over at Ground 
Kontrol, on NW 5th and Couch, in downtown Portland ...if you should ever feel the need to 
kill some Robotrons yourself.



Wikipedia: AcidHelmNun 

Eugene Jarvis
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Robotron was designed for Williams Electronics by a game consulting company called Vid 
Kidz, consisting of Eugene Jarvis and Larry DeMar. Here is Eugene Jarvis in 2006.



robotron-2084.co.uk
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Their handiwork consists of four giant circuit boards inside the game cabinet. Here is the 
largest one. It connects to the video monitor, and a couple of other boards. Let’s look at the 
labeling on some of the chips and see if we can’t Google datasheets to learn more about 
them.



robotron-2084.co.uk

MC6809E
24 x MK4116
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The big chip on the left is a Motorola MC6809E “8-bit Microprocessing Unit”. The 24 chips in 
the upper right are MK4116 “16 kilobit dynamic RAM” chips. So it sounds like this board 
contains an 8-bit computer with 48K bytes of memory.



Wikipedia: Bilby
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We could be describing this classic computer, the Radio Shack Color Computer. It’s also built 
on the Motorola 6809 processor, and came with roughly the same amount of memory. 
Robotron is built very much like the computers of the day, but has some special hardware 
that makes it much better for implementing video games.



robotron-2084.co.uk
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Here’s another, smaller board that attaches to the large board via the gray ribbon cable in the 
upper right corner. It attaches to another small board via the top-left connector, and to the 
coin acceptors via the bottom-left connector.



12 x “ROM”

MC6821

robotron-2084.co.uk
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Twelve of these chips have labels on them that say “ROM”. They’re uniquely numbered from 
one to twelve. This must be the read-only memory where the program code for the game is 
stored.
There’s an MC6821 Peripheral Interface Adapter next to the connectors on the left.



robotron-2084.co.uk
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Here’s the third board, which connects to the prior board by a cable. It also attaches to the 
audio speaker.



MC6802
“Video Sound 

ROM”

MC6821

MC6810

robotron-2084.co.uk
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There are three interesting chips here. The MC6802 is another “8-bit Microprocessor”. The 
MC6810 is a 128 byte RAM chip. And there’s a ROM chip for code. There’s another MC6821 
Peripheral Interface Adapter. So it seems like we have another 8-bit computer on this board. 
And it may be responsible for sound effects, because it has the speaker connection and has a 
“Video Sound ROM” chip on it.



robotron-2084.co.uk
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Here’s the last board, which connects to the big board via another gray ribbon cable. There 
are two connectors along the top edge that attach to the joysticks. If we look under the 
purple label...



MC6821

robotron-2084.co.uk
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...we find yet another MC6821 Peripheral Interface Adapter. So this chip must interface the 
joysticks and buttons to the system.



Proc RAM

ROM

PIA

Coin Slots Speaker

ProcRAM

ROMPIA

PIA JoysticksVideo

CPU Interface / “Widget”

ROM Sound
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Here’s a diagram of what we’ve learned so far about the four boards and how they connect. It 
seems like we have two distinct computers in this machine. One does the video stuff and 
checks the joysticks and coin slots. The other computer generates sound effects.



CPU Board (page 1)
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This is one of five pages of schematics for the Robotron game. Robotron was made back 
when circuit boards and chips were large and easy to repair using common tools, and 
electronics weren’t quite as reliable as they are today. So it made sense for the manufacturer 
to publish a repair manual that included complete schematics.



CPU Board (page 1)
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Here’s the MC6809E microprocessor we found earlier by looking at the board photos.



Processor Memory

10: #22
11: #33
12: move $10, $11
13: add #5, $11

program counter = 12
instruction = ?

address bus

data bus

write

Program Execution
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The MC6809E is the 1982 equivalent of an ARM or Intel or AMD processor. It runs a program, 
step-by-step, from machine language instructions located in memory. The program instructs 
the processor to modify the program’s state by reading and writing to variables stored in 
memory.



Tracing the Address Bus
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If we look at the 6809 processor, we can see the chip has 16 “A” signals, eight “D” signals, 
and a “Read/Write” signal. These are the signals that interface to the memory and 
peripherals.



Tracing the Address Bus
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If we follow the address signals out and see where they connect, we’ll find all of the memory 
and peripherals that are reachable from the microprocessor.



Tracing the Address Bus
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The address bus goes to the board with the ROM chips on it. It would make sense if the 
game’s program code was in the ROM.



Tracing the Address Bus
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Some of the address bus bits also go to the joystick board.



CPU Board (page 2)
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The address bus also goes to the CPU Board schematic, page 2, where it connects to the 48K 
byte of memory chips.



Proc

Address Bus

RAM

ROM Board
Widget Board
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Here’s a diagram of what we know about the CPU board so far. The processor and RAM are 
both connected to the address bus, and the address bus goes to the ROM board.



Tracing the Address Bus
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Back to the schematic, let’s see where the processor data bus goes. The data bus also goes to 
the ROM board, the Widget board, and to page two of the CPU board schematic.



CPU Board (page 2)
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On page two of the CPU board schematic, the data bus goes to the 48K memory bank.



Proc

Address Bus

Data Bus

RAM

ROM Board
Widget Board

ROM Board
Widget Board
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Here’s the data bus, added to the CPU board diagram.



Tracing the Address Bus
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Let’s look around the schematic for what else the address and data buses connect to. Here’s 
a RAM chip that’s not part of the 48K. It’s a 1K x 4 RAM...
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Here’s the first page of the chip’s datasheet.



bit ram[1024][4]

process chip_hm6514:
if write:
ram[address] = data

else:
data = ram[address]

> write = 1

> address = 22, data = 13

> write = 0

> address = 22, print data[22]
13
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And some pseudocode for how the chip behaves. An array is declared that represents the 1K 
x 4 bits of storage in the chip. A process in the chip outputs data found at an address in the 
array, unless the write signal is true, in which case, the chip writes data into its storage at the 
specified address.



Tracing the Address Bus

Saturday, June 22, 13

There’s a battery attached to this chip. If the machine loses power, the data in this memory 
chip will be preserved. This must be where the high scores and configuration are stored -- 
for when the arcade turns off the power to the machine every night. Your awesome high 
score will still be there in the morning!



Watchdog
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Here’s another chunk of circuitry connected to the processor address and data buses. It has a 
telling bit of text in the middle of it -- “Watchdog Disable”. This must be the hardware 
watchdog circuit for the game. A hardware watchdog is a circuit that will reset the system if 
something goes wrong.



Watchdog

process watchdog_timer:
wait for watchdog_timer_clock.event
if watchdog_timer_count == timeout_count:
processor.reset = 1

else:
processor.reset = 0
watchdog_timer_count += 1

process watchdog_reset:
if memory_address == watchdog_address:
if memory_data == watchdog_reset_value:
if write:
watchdog_timer_count = 0

Application code:
... do fun stuff ...
memory[watchdog_address] = watchdog_reset_value
... do more fun stuff ...
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A common way to do this is by writing your application code so that it periodically resets a 
timer. The code causes the timer to reset by writing a specific piece of data to a specific 
memory address. If this isn’t done by the time the timer reaches the timeout value, the 
watchdog circuit resets the processor on the assumption that the program has crashed 
somehow. (This is long before operating systems and exception handling and all that fancy 
stuff.)



Watchdog
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How is this achieved in the Robotron hardware? On the right side is some decoding logic that 
checks the address and data buses for the specific watchdog values. I’ll work through this 
logic in a moment. But first, a quick detour into how boolean logic operations are depicted on 
a schematic...



ANDANDAND
A B OUT
0 0 0
0 1 0
1 0 0
1 1 1

Logic Symbols - AND

A

B
OUT

OUT = A and B

Wikipedia: jjbeard

Saturday, June 22, 13

Here’s a two-input AND symbol. Flat on the input sides and rounded on the output side.



OROROR
A B OUT
0 0 0
0 1 1
1 0 1
1 1 1

Logic Symbols - OR

A

B
OUT

Wikipedia: jjbeard

OUT = A or B

Saturday, June 22, 13

...a two-input OR. Rounded and pointy on both ends.



XORXORXOR
A B OUT
0 0 0
0 1 1
1 0 1
1 1 0

Logic Symbols - XOR

A

B
OUT

Wikipedia: jjbeard

OUT = (A != B)

Saturday, June 22, 13

...a two-input XOR, like an OR, but with an extra line across the input of the symbol.

An XOR is true only when the inputs are *not* the same.



NOTNOT
A OUT
0 1
1 0

Logic Symbols - NOT

A OUT

Wikipedia: jjbeard

OUT = not A
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...this is a NOT symbol, also referred to as an inverter. Notice the circle on the output...



NANDNANDNAND
A B OUT
0 0 1
0 1 1
1 0 1
1 1 0

Logic Symbols - NAND

A

B
OUT

Wikipedia: jjbeard

OUT = not (A and B)
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...there’s a circle on the output of this AND symbol, which *inverts* the AND output and 
makes it a “not-AND” or NAND function.



NORNORNOR
A B OUT
0 0 1
0 1 0
1 0 0
1 1 0

Logic Symbols - NOR

A

B
OUT

Wikipedia: jjbeard

OUT = not (A or B)
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The same thing applies here... An OR symbol with a circle on the output becomes a “not-OR” 
or NOR function.



Watchdog
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Back to the watchdog area of the schematic. Here are two NOR gates.



Watchdog

        x or y

        x or y
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The shape of this symbol represents an OR function...



Watchdog

not (   x or y   )

not (   x or y   )
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..but the circle on the output means that the output is inverted, making it a NOR function.



Watchdog

not (D[1] or D[2])

not (D[6] or D[7])
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In this case, they’re EACH taking two bits from the data bus as input.



Watchdog

not x
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And at the bottom, we have a NOT function, which just inverts the boolean value that goes in 
to it.



Watchdog

not (not (A[8:15] == 0xC8))
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In this case, that value comes from somewhere else on the schematic, where address signals 
8 through 15 are compared against C8 in hexadecimal.



Watchdog

          A[8:15] == 0xC8
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Two wrongs make a right (if you invert a value twice, you get the original value), so the two 
NOTs cancel out, and we’re left with a simple comparison.



Watchdog

                x and y
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Here’s an AND function. The output is a one only if both inputs are ones.



Watchdog

                x and A[1]
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One of the inputs is address bit 1.



Watchdog

(A[8:15] == 0xC8) and A[1]
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The other input comes from the output of the NOT function from a few slides ago.



Watchdog

not (
x1 and
x2 and
x3 and
x4 and
x5 and
x6 and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)
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All of these functions flow into a giant NAND function -- an AND function with 13 inputs and 
an inverted output.



Watchdog

not (
x1 and
x2 and
x3 and
x4 and
x5 and
x6 and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)

not (D[1] or D[2])

not (D[6] or D[7])

Saturday, June 22, 13

The two NOR functions go into the NAND... ***next***



Watchdog

not (
x1 and
x2 and
x3 and
x4 and
x5 and
x6 and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)

not (D[1] or D[2])

not (D[6] or D[7])
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The two NOR functions go into the NAND... ***next***



Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
x6 and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)

not (D[6] or D[7])
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Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
x6 and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)

not (D[6] or D[7])
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Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
(not (D[6] or D[7])) and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)
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*** next ***



Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
(not (D[6] or D[7])) and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

) (A[8:15] == 0xC8) and A[1]
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The AND function goes into the NAND... ***next***



Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
(not (D[6] or D[7])) and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
x13

)
(A[8:15] == 0xC8) and A[1]
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The AND function goes into the NAND... ***next***



Watchdog

not (
x1 and
(not (D[1] or D[2])) and
x3 and
x4 and
x5 and
(not (D[6] or D[7])) and
x7 and
x8 and
x9 and
x10 and
x11 and
x12 and
((A[8:15] == 0xC8) and A[1])

)
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***next***



Watchdog

not (
D[0] and
(not (D[1] or D[2])) and
D[3] and
D[4] and
D[5] and
(not (D[6] or D[7])) and
A[2] and
A[3] and
A[4] and
A[5] and
A[6] and
A[7] and
((A[8:15] == 0xC8) and A[1])

)
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...and lastly, a bunch of direct connections to various other data and address bits.



Watchdog

not (x or x)
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The output of that big ball of logic goes into a NOR, but with both inputs tied together -- 
having the same value. When the inputs are zero, the output is one. And when the inputs are 
one, the output is 0. That sounds like an inverter!



Watchdog

not  x
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The hardware designer did this because logic functions usually come in multiples per chip. 
For a NOR function, you usually get four functions in a chip. The designer needed one more 
inverter, but only had an extra NOR. So they wired the extra NOR this way to make it act like 
an inverter. In doing so, the designer AVOIDED adding another inverter chip to the design.



Watchdog

not (not (
D[0] and
(not (D[1] or D[2])) and
D[3] and
D[4] and
D[5] and
(not (D[6] or D[7])) and
A[2] and
A[3] and
A[4] and
A[5] and
A[6] and
A[7] and
((A[8:15] == 0xC8) and A[1])

))
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So with the additional NOT applied to the equation, we have this as our watchdog address 
and data decoder. Two NOTs cancel out, and we’re left with this...



Watchdog

D[0] and
(not (D[1] or D[2])) and
D[3] and
D[4] and
D[5] and
(not (D[6] or D[7])) and
A[2] and
A[3] and
A[4] and
A[5] and
A[6] and
A[7] and
((A[8:15] == 0xC8) and A[1])
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This is the equation which determines if the processor is trying to reset the watchdog timer. 
If this chunk of logic detects that the processor is trying to write a specific address with a 
specific data value, this equation will become true and will reset the watchdog timer, 
preventing the machine from being reset.



Watchdog

D[0] and
(not (D[1] or D[2])) and
D[3] and
D[4] and
D[5] and
(not (D[6] or D[7])) and
A[2] and
A[3] and
A[4] and
A[5] and
A[6] and
A[7] and
((A[8:15] == 0xC8) and A[1])

D[0]==1
(not (D[1] or D[2]))==1
D[3]==1
D[4]==1
D[5]==1
(not (D[6] or D[7]))==1
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
((A[8:15] == 0xC8) and
A[1])==1
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So let’s substitute some values to figure out what will make this equation be 1 (true). At the 
outermost level, all the values are ANDed together. To make the equation equal 1 (true), D[0] 
needs to be 1 and D[3] needs to be 1, and D[4] needs to be 1, and so on...



Watchdog

D[0]==1
(not (D[1] or D[2]))==1
D[3]==1
D[4]==1
D[5]==1
(not (D[6] or D[7]))==1
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
(A[8:15] == 0xC8)==1
A[1]==1
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The test for A[8 through 15] equals C8 *and* A[1] equals 1 can be separated.



Watchdog

D[0]==1
(D[1] or D[2])==0
D[3]==1
D[4]==1
D[5]==1
(D[6] or D[7])==0
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
(A[8:15] == 0xC8)==1
A[1]==1
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We can flip the truth on the two NOR equations... Removing the NOT and making the result 
equal 0 instead of 1.



Watchdog

A = 
A[8:15] = 0xC8,
A[7] = 1,
A[6] = 1,
A[5] = 1,
A[4] = 1,
A[3] = 1,
A[2] = 1,
A[1] = 1,
A[0] = ?

A = 0xC8FE or 0xC8FF!

D[0]==1
(D[1] or D[2])==0
D[3]==1
D[4]==1
D[5]==1
(D[6] or D[7])==0
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
(A[8:15] == 0xC8)==1
A[1]==1
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From this, we can stick together the possible combinations and determine what the watchdog 
address is. Because A[0] isn’t checked by the watchdog logic, it could be either a zero or a 
one, so the watchdog logic will respond to two different addresses, C8FE or C8FF.



Watchdog

D = 
(D[6] or D[7]) = 0,

D[5] = 1,
D[4] = 1,
D[3] = 1,
(D[1] or D[2]) = 0,

D[0] = 1

D[0]==1
(D[1] or D[2])==0
D[3]==1
D[4]==1
D[5]==1
(D[6] or D[7])==0
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
(A[8:15] == 0xC8)==1
A[1]==1
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As for the data, we can do the same thing. For D[6] OR D[7] to be zero, both D[6] and D[7] 
must be zero. The same goes for D[1] and D[2].



Watchdog

D[0]==1
(D[1] or D[2])==0
D[3]==1
D[4]==1
D[5]==1
(D[6] or D[7])==0
A[2]==1
A[3]==1
A[4]==1
A[5]==1
A[6]==1
A[7]==1
(A[8:15] == 0xC8)==1
A[1]==1

D = 
D[7] = 0,
D[6] = 0,
D[5] = 1,
D[4] = 1,
D[3] = 1,
D[2] = 0,
D[1] = 0,
D[0] = 1

D = 0x39!
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So the watchdog reset data value is 39 hex.



Proc

Address Bus

Data Bus

RAM

ROM Board
Widget Board

ROM Board
Widget Board

Watchdog
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Here’s the system architecture, updated with the watchdog timer. You can see that it listens 
to the address and data buses, and controls the RESET signal going to the processor.



Video - Signals Overview

Red

Green

Blue

H-Sync

V-Sync
time
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Next, the video system, and a quick refresher on how analog video signals work. ***next*** 
Pixels are scanned out to a video display one pixel at a time, over three color channels. The 
horizontal sync signal tells the video display when a row of pixels has ended, and to move 
back to the left side of the screen -- much like a carriage return and line feed in a text 
console. The vertical sync tells the video display when to start a new screen full of pixels. On 
most displays, this happens 60 times a second.



Video - Signals Overview

Red

Green

Blue

H-Sync

V-Sync
time
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Next, the video system, and a quick refresher on how analog video signals work. ***next*** 
Pixels are scanned out to a video display one pixel at a time, over three color channels. The 
horizontal sync signal tells the video display when a row of pixels has ended, and to move 
back to the left side of the screen -- much like a carriage return and line feed in a text 
console. The vertical sync tells the video display when to start a new screen full of pixels. On 
most displays, this happens 60 times a second.



Video - Output
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Here’s the red, green, blue, horizontal sync, and vertical sync signals on the CPU board. This 
must be the video output. Let’s trace back from these signals to see how the video hardware 
works.



Video - RGB Channels
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The red, green, and blue signals carry the pixel colors to the monitor as a video frame is 
scanned out for display, 60 times a second. The signals come through three transistors which 
buffer the output of three resistor ladders, one for each color channel.

Resistor ladders are a simple form of digital-to-analog converter. We can see that there are 
three bits (three resistors) allocated to red, three to green, but only two to blue. In total, we 
have eight bits of color depth. This is a big step back from the 24-bit color displays we enjoy 
on modern computers.



Video - Pixel Color Look-Up Table
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Continuing to work back from the pixel resistor ladders, we find two memory chips -- very 
small memory chips.
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...a measly 64 bits, in fact, organized as an array of 16 x 4 bits.



Video - Pixel Color Look-Up Table
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Two of these RAM chips are wired up into a 16 x 4 x 2 arrangement, for an effective array 
size of 16 x 8 bits.



Video - Pixel Color Look-Up Table
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The eight data outputs of these memory chips are wired to the RGB color channels.



Video - Pixel Color Look-Up Table
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And the eight data inputs are connected to the processor’s data bus.



Video - Pixel Color Look-Up Table
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The address input (the index into the memory array) comes from the memory bank on the 
other page of the CPU board schematic.



bit lut[16][8]

process pixel_lut:
if write:
lut[index] = processor_data

else:
red = lut[index][2:0]
green = lut[index][5:3]
blue = lut[index][7:6]

Video - Pixel Color Look-Up Table
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At this point, it’s safe to say that the display image lives in a buffer in the 48K memory bank, 
and that these two little memory chips are providing a look-up table, turning four-bit pixel 
values into eight-bit RGB values. In other words, this is a color table or color palette memory. 
The processor can modify the color palette to change the RGB color that a pixel index 
corresponds to. This is what gives Robotron its crazy palette animation effects.
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Modern computers, without palette lookup tables, would have to redraw virtually the entire 
screen to achieve these epilepsy-inducing color effects. But with the Robotron’s palette-
based graphics system, the processor just rewrites only 16 palette RAM values for each video 
frame, and animation is achieved!
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Modern computers, without palette lookup tables, would have to redraw virtually the entire 
screen to achieve these epilepsy-inducing color effects. But with the Robotron’s palette-
based graphics system, the processor just rewrites only 16 palette RAM values for each video 
frame, and animation is achieved!



Video - Pixel Color Look-Up Table
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How does pixel data get from the 48K memory bank to the color palette memory? It comes in 
from the other schematic sheet, four bits at a time, as signals “serial0” through “serial3”.



Video - Memory:Pixel Serializer
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Those four bits come from this circuit, which is made up of four 74166 chips. Each chip is an 
eight-bit shift register. These shift registers take bytes and turn them into a stream of bits.



Video - Memory:Pixel Serializer

bit value[8]

process shift_instance:
wait for clock.event
if load:
value = input

else:
value = value >> 1

output = value & 1
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In pseudo-code, this is how an eight-bit shift register would look. The shift register only 
does work when a clock event occurs. If the load variable is true, the shift register value 
loaded from the input byte. If the load variable is false, the shift register shifts the register 
one bit. The output is always the value of the shift register’s least-significant bit.



Video - Memory:Pixel Serializer
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How are these shift registers connected? The input to the shift registers comes from the 
memory bank, 24 bits at a time.



Video - Memory:Pixel Serializer
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Those 24 bits are then doled out from the shift registers, four bits at a time, into the color 
palette memory.



Video - Memory:Pixel Serializer
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The clock signal going to each shift register controls how fast the bits are shifted out of the 
shift registers. Elsewhere in the schematic, the clock is shown to be 6 MHz.



Memory

Shift

Shift

Shift

Shift

24

6

6

6

6

4

1

1

1

1

Pixel 
Palette Index

1 MHz 6 MHz

Saturday, June 22, 13

So to sum up this bit of the circuit: The pixel data is read from the memory 24 bits at a time, 
at a rate of 1 MHz, and loaded into the shift registers. The shift registers serialize this data to 
produce four bits at a time, or one pixel at a time, at a rate of 6 MHz.  But why this 
complicated arrangement with shift registers? Why couldn’t the hardware read two pixels 
(one byte) directly from memory at a rate of 3 MHz and do away with the shift registers?



Memory
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To answer that, have a look at the datasheet for the RAM chips that make up the memory 
bank where the video frame buffer lives.



Memory
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You’ll see that this chip takes between 150 ns and 200 ns to access data, depending on 
whether you use the faster or slower version of the chip. Just like DDR3 memory speeds in 
modern computers, fast memory chips in 1982 commanded a premium price. In fact, the 
designers specified a much older model of this chip that took 450 ns to access data!



> time = 450e-9     # 450 ns

> frequency = 1.0 / time

> print(frequency)
2222222.2222222
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So how many accesses per second can a 450 ns memory chip perform? 2.2 million.
Remember how we needed to read 3 million bytes a second from memory to have a video 
pixel output rate of 6 million pixels a second? 450 ns memory chips clearly aren’t fast 
enough.
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Add to that the problem that the memory is being shared with the processor. The processor 
has a 1 MHz clock cycle, and needs to access the memory up to 1 million times a second. So 
we need a combined memory bandwidth of 4 million bytes a second for both the video and 
processor.
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This is why the hardware designers made the memory bank three bytes wide instead of one 
byte wide, and added the shift registers for the pixel data. If memory accesses take 450 ns, 
but you’re reading three bytes each time instead of just one byte, your aggregate bandwidth 
is 6.7 million bytes per second -- enough to satisfy the combined 4 million bytes per second 
for the video hardware and the processor.



Video - Time for a Cocktail

Stephan Suys: http://www.arcade.chezsuys.com/RoboCocktail.html
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While we’re on the subject of video hardware, I should tell you about the cocktail cabinet 
versions of Robotron. These are cabinets built like tables. Two players sit on opposite ends of 
the machine, with the screen in between (or a baby, in this case), and play two-player games 
against each other.

http://www.arcade.chezsuys.com/RoboCocktail.html
http://www.arcade.chezsuys.com/RoboCocktail.html


Video - Time for a Cocktail
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I suppose it goes without saying that the image on the screen needs to flip upside-down for 
player 2 to be able to play the game.



Video - Time for a Cocktail
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I suppose it goes without saying that the image on the screen needs to flip upside-down for 
player 2 to be able to play the game.
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I conveniently ignored the fact that there’s a second set of pixel shift registers next to the 
ones we just discussed. There’s a subtle difference, though...
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The bits from memory are connected to the bottom shift registers in a different order from 
the top, reversing the order of pairs of pixels. Instead of the pixel order being 1-2, 3-4, 5-6, 
it’s 2-1, 4-3, 6-5. Very interesting...



Video - Screen Control
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The two sets of pixel shift registers flow into a 2:1 selector, which switches between the 
output of the top shift registers and the bottom shift registers, based on a mysterious signal 
called “SCREEN CONTROL”. Let’s look around for other places on the schematics where this 
SCREEN CONTROL signal appears.



Video - Screen Control
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SCREEN CONTROL shows up on the first page of the CPU board schematic, where it goes off 
to the ROM board. But it also goes into two chips.



Video - Screen Control
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Both are the same kind of a chip, the 7641.
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The 7641 is a 512 byte programmable read-only memory (or PROM).



Video - Screen Control
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The PROM chip on the left is connected between the processor address bus and a “pseudo” 
address bus. The pseudo address bus goes to the 48K memory bank, where the video frame 
buffer and game runtime state lives.

The PROM chip on the right is connected between the 48K memory bank and the video pixel 
counter, which keeps track of which video pixel is being sent to the display at any instant in 
time.



Video - Screen Control
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The SCREEN CONTROL signal comes in to one of the address lines of each PROM chip. So 
what is it doing?

The two chips work in concert to change the order pixels are written to memory, and the 
order they’re read for memory when being scanned onto the display. By changing the SCREEN 
CONTROL signal, the image on the screen will reverse without any additional effort from the 
processor.



Video - Screen Control
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Why do this? Remember, this processor runs at 1MHz, and executes maybe 300,000 
instructions per second (modern processors perform billions of instructions per second). The 
processor doesn’t have time to do the extra math to reverse coordinates when it’s drawing. 
And there’s no fancy, modern GPU chip to do it, either. The designers solved the problem 
with a simple bit of hardware that alters the way memory is addressed, and it’s transparent to 
the processor.



Sound Board
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I’ve touched on most of the interesting stuff on the ROM board, so let’s have a quick look at 
the sound board. Recall that we found all the chips required to make a full computer -- an 8-
bit processor, a RAM chip, and some ROM for program code.

Here is the connection to the ROM board. The processor on the CPU board controls the sound 
board through this interface.



Sound Board
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Here’s the MC6802 microprocessor.



Sound Board
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The 128 byte memory.



Sound Board
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The ROM chip.



Sound Board
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...and yet another MC6821 Peripheral Interface Adapter.



Sound Board
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Connected to the Peripheral Interface Adapter is an MC1408 chip, which is then connected to 
a speaker and volume control.
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The MC1408 is an eight-bit digital-to-analog converter. This must be the audio output, and 
the computer on the sound board must be an eight-bit digital audio synthesizer!



Graphics - Special Chip 1
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This is the Williams Special Chip 1 -- worthy of a talk all by itself, so I’m going to skip it this 
time. This chip is the 1982 equivalent of a GPU. It was designed to move pixels around in 
memory without the involvement of the main processor. Since the 6809E processor can only 
execute a few hundred thousand instructions per second (it runs at only 1 MHz), it needs 
help moving pixels fast enough to implement the game.



Graphics - Special Chip 1
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A pair of these chips are on the ROM board of each Robotron machine, and are commanded 
by the processor to do the bulk of the graphics and animation, including copying bitmap font 
images from ROM to video memory.



ROM Board
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I’m going to skip the rest of the ROM board, since there’s not too much more interesting on 
it, just a ROM bank, and the interface to the coin acceptors and sound board.



Interface (Widget) Board
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I’m also going to skip the interface board. AGain, not much of note, just an interface to the 
joystick and player buttons.



What’s the Point?
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So besides having fodder for this talk, why did I reverse-engineer Robotron? I wanted to 
recreate the game. But not as software...



Software Isn’t Quite Like Hardware
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...that’s already been done by software like MAME, the multi-arcade machine emulator. But 
it’s not a very literal simulation. It doesn’t try too hard to act like the actual hardware.



FPGAs - Stem Cells for Silicon

FPGA
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I wanted to recreate the game using the schematics, and a real 6809E processor. To do this, I 
used a “field programmable gate array” or FPGA chip, which I like to describe as “stem cells 
for silicon”. An FPGA is like any other chip, except it’s not wired to do anything in particular. 
Instead, you load your own wiring into a matrix on the chip that connects the chip’s logic the 
way you want it. An FPGA could act like a microprocessor, a video card, a BitCoin miner, a 
music synthesizer, a high-speed data decryptor, a RADAR data processing system... or 
simulate video game hardware...



Logic == Logic
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An FPGA isn’t executing code, it’s acting exactly like the chips on the schematic. And 
therefore, it has the potential to be a more accurate recreation of the game.



Cop-Out, or Retro Reverence?
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I did cop out on one thing, though. I didn’t want to try and recreate the MC6809E 
microprocessor in the FPGA. It was too much of a challenge for my FPGA skills. So I created 
an interface board so I could plug a real 6809 into my FPGA board and avoid that work. In 
retrospect, I kinda like that there’s still an original chip in my project. It makes it even *more* 
real...



Hardware Description Language

process(clock)
begin
    if rising_edge(clock) then
        if reset_request = '1' then
            reset_counter <= (others => '0');
            reset <= '1';
        else
            if reset_counter < 100 then
                reset_counter <= reset_counter + 1;
            else
                reset <= '0';
            end if;
        end if;
    end if;
end process;
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So how do you describe to an FPGA how you want it to act? With a hardware description 
language or HDL. There are two major languages -- VHDL and Verilog. It looks a lot like 
software, but it’s not. In HDL, the code you write turns into actual bits of hardware -- 
circuitry that performs exactly the tasks you describe. And all these circuits operate 
simultaneously, which means FPGAs are great for doing massively parallel processing tasks.



Implementation from Schematic
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As I studied the schematic, I implemented the circuitry I found by describing it in HDL code.



One of Many Misunderstandings...
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There were a few mis-steps along the way. The most visible were when I was trying to 
understand how the video hardware worked.



But Eventually...
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But eventually, I figured it out and got a playable machine!

All my HDL is up on GitHub, if you’re at all interested in how it all works...



Links

seanriddle.com/willy.html

github.com/sharebrained/robotron-fpga

churchofrobotron.com

Incredible reverse-engineering of Williams arcade machines

My FPGA-based Robotron hardware implementation

All Must Be Tested!!!
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